deconv2d_op.h 8.7 KB
Newer Older
Z
deconv  
zchen0211 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Z
deconv  
zchen0211 已提交
17
#include "glog/logging.h"
Z
deconv  
zchen0211 已提交
18 19 20 21 22 23 24 25 26
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Z
zchen0211 已提交
27
using DDim = framework::DDim;
Z
deconv  
zchen0211 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

// Define Op classes in .h file so that other deconv
// operator implementations can reuse the code.
class Deconv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Deconv2DOpMaker(framework::OpProto* proto,
                  framework::OpAttrChecker* op_checker);
};

class Deconv2DOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

class Deconv2DOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

Z
zchen0211 已提交
53 54 55 56 57
template <typename Place, typename T>
class GemmDeconv2DKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
Z
zchen0211 已提交
58
    // The filter will be reshaped, so it should not be constant pointer
Z
zchen0211 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    Tensor filter = *context.Input<Tensor>("Filter");

    Tensor* output = context.Output<Tensor>("Output");

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");

    // no paddings and groups allowed in deconv

    int N = input->dims()[0];
    int M = input->dims()[1];
    int H = input->dims()[2];
    int W = input->dims()[3];

    int K_H = filter.dims()[2];
    int K_W = filter.dims()[3];

    int C = output->dims()[1];  // output channels
    int O_H = output->dims()[2];
    int O_W = output->dims()[3];

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        col2im;

    // use col_shape in the im2col and col2im calculation
Z
deconv  
zchen0211 已提交
84
    DDim col_shape = {C, K_H, K_W, H, W};
Z
zchen0211 已提交
85 86

    // use col_matrix_shape in the gemm calculation
Z
deconv  
zchen0211 已提交
87
    DDim col_matrix_shape = {C * K_H * K_W, H * W};
Z
zchen0211 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);

    DDim output_shape = {C, O_H, O_W};
    DDim input_matrix_shape = {M, H * W};

    DDim filter_matrix_shape = {M, C * K_H * K_W};
    filter.Resize(filter_matrix_shape);

    // deconvolution: gemm + col2im (similar to conv-backward on input)

    output->mutable_data<T>(context.GetPlace());
    auto t = framework::EigenVector<T>::Flatten(*output);
    t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

    for (int i = 0; i < N; i++) {
      // batch with size (M, H * W)
      Tensor input_batch = input->Slice<T>(i, i + 1).Resize(input_matrix_shape);
Z
deconv  
zchen0211 已提交
112 113
      // filter size: (M, C * K_H * K_W)

Z
zchen0211 已提交
114 115 116 117 118 119 120
      // output size: (C, O_H, O_W)
      Tensor output_batch = output->Slice<T>(i, i + 1).Resize(output_shape);

      // col_matrix = filter * input_batch
      // of shape (C * K_H * K_W, H * W)
      math::matmul<Place, T>(context.device_context(), filter, true,
                             input_batch, false, T(1.0), &col_matrix, T(0.0));
Z
deconv  
zchen0211 已提交
121
      col2im(context.device_context(), output_batch, col, strides[0],
Z
zchen0211 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134
             strides[1], 0, 0);
    }
  }
};

template <typename Place, typename T>
class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));

Z
zchen0211 已提交
135 136
    // For filter, we do not use const pointer b/c we will do reshape,
    // but we should avoid modifying its value.
Z
zchen0211 已提交
137 138 139 140 141 142 143 144
    Tensor filter = *context.Input<Tensor>("Filter");

    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
Z
zchen0211 已提交
145
    // Actually, no paddings and groups allowed in deconv.
Z
deconv  
zchen0211 已提交
146
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
Z
zchen0211 已提交
147 148 149 150 151 152 153 154 155

    int N = input->dims()[0];
    int M = input->dims()[1];
    int H = input->dims()[2];
    int W = input->dims()[3];

    int K_H = filter.dims()[2];
    int K_W = filter.dims()[3];

Z
deconv  
zchen0211 已提交
156 157 158
    int C = output_grad->dims()[1];  // output channels
    int O_H = output_grad->dims()[2];
    int O_W = output_grad->dims()[3];
Z
zchen0211 已提交
159

Z
deconv  
zchen0211 已提交
160
    // Only im2col functor required for bp to get to the right shape
Z
deconv  
zchen0211 已提交
161 162 163
    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
Z
zchen0211 已提交
164 165

    // use col_shape in the im2col and col2im calculation
Z
deconv  
zchen0211 已提交
166
    DDim col_shape = {C, K_H, K_W, H, W};
Z
zchen0211 已提交
167 168

    // use col_matrix_shape in the gemm calculation
Z
deconv  
zchen0211 已提交
169
    DDim col_matrix_shape_f = {C * H * W, K_H * K_W};
Z
zchen0211 已提交
170 171 172 173 174 175 176 177 178 179

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.

    DDim output_shape = {C, O_H, O_W};
    DDim input_matrix_shape = {M, H * W};

Z
deconv  
zchen0211 已提交
180
    DDim filter_matrix_shape = {M, C * K_H * K_W};
Z
zchen0211 已提交
181 182
    filter.Resize(filter_matrix_shape);

Z
deconv  
zchen0211 已提交
183 184 185 186
    // deconvolution grad on input:
    // im2col + gemm (similar to conv-forward)
    // input need to compute gradient
    if (input_grad) {
Z
deconv  
zchen0211 已提交
187 188 189 190
      Tensor col_matrix = col;
      DDim col_matrix_shape = {C * K_H * K_W, H * W};
      col_matrix.Resize(col_matrix_shape);

Z
deconv  
zchen0211 已提交
191 192 193 194 195 196 197 198
      input_grad->mutable_data<T>(context.GetPlace());
      auto t = framework::EigenVector<T>::Flatten(*input_grad);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < N; i++) {
        // batch with size (C, O_H * O_W)
        Tensor output_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_shape);
Z
deconv  
zchen0211 已提交
199 200
        // filter of size (M, C * K_H * K_W)

Z
deconv  
zchen0211 已提交
201 202 203 204
        // batch with size (M, H, W)
        Tensor input_grad_batch =
            input_grad->Slice<T>(i, i + 1).Resize(input_matrix_shape);

Z
deconv  
zchen0211 已提交
205
        // im2col: dy from (C, O_H, O_W) -> (C * K_H * K_W, H * W)
Z
deconv  
zchen0211 已提交
206 207
        im2col(context.device_context(), output_grad_batch, col, strides[0],
               strides[1], paddings[0], paddings[1]);
Z
deconv  
zchen0211 已提交
208

Z
deconv  
zchen0211 已提交
209
        // gemm: dx = filter * dy
Z
deconv  
zchen0211 已提交
210
        // (M, C * K_H * K_W) * (C * K_H * K_W, H * W) -> (M, C, H)
Z
deconv  
zchen0211 已提交
211 212 213 214 215
        math::matmul<Place, T>(context.device_context(), filter, false,
                               col_matrix, false, T(1.0), &input_grad_batch,
                               T(0.0));
      }
    }
Z
zchen0211 已提交
216

Z
deconv  
zchen0211 已提交
217 218
    // filter gradient required
    if (filter_grad) {
Z
deconv  
zchen0211 已提交
219 220 221 222
      Tensor col_matrix_f = col;
      DDim col_matrix_shape_f = {C * H * W, K_H * K_W};
      col_matrix_f.Resize(col_matrix_shape_f);

Z
deconv  
zchen0211 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
      auto t = framework::EigenVector<T>::Flatten(filter_grad_);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < N; ++i) {
        // batch with size (C, O_H, O_W)
        Tensor output_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_shape);
        // input batch
        Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_matrix_shape);

Z
deconv  
zchen0211 已提交
236
        // im2col: (C * H * W, K_H * K_W)
Z
deconv  
zchen0211 已提交
237 238
        im2col(context.device_context(), output_grad_batch, col, strides[0],
               strides[1], paddings[0], paddings[1]);
Z
deconv  
zchen0211 已提交
239

Z
deconv  
zchen0211 已提交
240
        // gemm: d_filter = x * y_grad^T
Z
deconv  
zchen0211 已提交
241
        // (M, C * H * W) * (K_H * K_W, C * H * W) -> (M, C, H)
Z
deconv  
zchen0211 已提交
242
        math::matmul<Place, T>(context.device_context(), in_batch, false,
Z
deconv  
zchen0211 已提交
243 244
                               col_matrix_f, true, T(1.0), &filter_grad_,
                               T(1.0));
Z
deconv  
zchen0211 已提交
245
      }
Z
zchen0211 已提交
246 247 248 249
    }
  }
};

Z
deconv  
zchen0211 已提交
250 251
}  // namespace operators
}  // namespace paddle