Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d97a732f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d97a732f
编写于
10月 19, 2017
作者:
Z
zchen0211
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
deconv
上级
e59ca752
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
24 addition
and
16 deletion
+24
-16
paddle/operators/deconv2d_op.cc
paddle/operators/deconv2d_op.cc
+0
-4
paddle/operators/deconv2d_op.h
paddle/operators/deconv2d_op.h
+24
-12
未找到文件。
paddle/operators/deconv2d_op.cc
浏览文件 @
d97a732f
...
...
@@ -30,7 +30,6 @@ void Deconv2DOp::InferShape(framework::InferShapeContext* ctx) const {
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
int
groups
=
ctx
->
Attrs
().
Get
<
int
>
(
"groups"
);
for
(
int
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
paddings
[
i
],
0
,
"No Padding allowed in deconv op."
);
...
...
@@ -41,9 +40,6 @@ void Deconv2DOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE_EQ
(
in_dims
[
1
],
filter_dims
[
0
],
"input and kernel input dimension should be equal."
);
PADDLE_ENFORCE_EQ
(
groups
,
1
,
"The number of groups should be 1 in case of deconv op."
);
auto
output_height
=
(
in_dims
[
2
]
-
1
)
*
strides
[
0
]
+
filter_dims
[
2
];
auto
output_width
=
(
in_dims
[
3
]
-
1
)
*
strides
[
1
]
+
filter_dims
[
3
];
ctx
->
SetOutputDim
(
"Output"
,
...
...
paddle/operators/deconv2d_op.h
浏览文件 @
d97a732f
...
...
@@ -83,7 +83,7 @@ class GemmDeconv2DKernel : public framework::OpKernel<T> {
DDim
col_shape
=
{
C
,
K_H
,
K_W
,
H
,
W
};
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape
=
{
M
*
K_H
*
K_W
,
H
*
W
};
DDim
col_matrix_shape
=
{
C
*
K_H
*
K_W
,
H
*
W
};
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
...
...
@@ -108,11 +108,11 @@ class GemmDeconv2DKernel : public framework::OpKernel<T> {
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
// batch with size (M, H * W)
Tensor
input_batch
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// filter size: (M, C * K_H * K_W)
// output size: (C, O_H, O_W)
Tensor
output_batch
=
output
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_shape
);
// filter size: (Co, Ci * Hf * Wf)
// col_matrix = filter * input_batch
// of shape (C * K_H * K_W, H * W)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
true
,
...
...
@@ -132,8 +132,8 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
// For filter, we do not use const pointer
// but we should avoid
// For filter, we do not use const pointer
b/c we will do reshape
// but we should avoid
modifying its value
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
input_grad
=
...
...
@@ -157,7 +157,7 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
int
O_H
=
output_grad
->
dims
()[
2
];
int
O_W
=
output_grad
->
dims
()[
3
];
//
Two functors required
to get to the right shape
//
Only im2col functor required for bp
to get to the right shape
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
...
...
@@ -166,15 +166,13 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
DDim
col_shape
=
{
C
,
K_H
,
K_W
,
H
,
W
};
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape
=
{
C
*
K_H
*
K_W
,
H
*
W
};
DDim
col_matrix_shape
_f
=
{
C
*
H
*
W
,
K_H
*
K_
W
};
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor
col_matrix
=
col
;
col_matrix
.
Resize
(
col_matrix_shape
);
DDim
output_shape
=
{
C
,
O_H
,
O_W
};
DDim
input_matrix_shape
=
{
M
,
H
*
W
};
...
...
@@ -186,6 +184,10 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
// im2col + gemm (similar to conv-forward)
// input need to compute gradient
if
(
input_grad
)
{
Tensor
col_matrix
=
col
;
DDim
col_matrix_shape
=
{
C
*
K_H
*
K_W
,
H
*
W
};
col_matrix
.
Resize
(
col_matrix_shape
);
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
...
...
@@ -194,14 +196,18 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
// batch with size (C, O_H * O_W)
Tensor
output_grad_batch
=
output_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_shape
);
// filter of size (M, C * K_H * K_W)
// batch with size (M, H, W)
Tensor
input_grad_batch
=
input_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// im2col: (C * K_H * K_W, H * W)
// im2col:
dy from (C, O_H, O_W) ->
(C * K_H * K_W, H * W)
im2col
(
context
.
device_context
(),
output_grad_batch
,
col_matrix
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
]);
// gemm: dx = filter * dy
// (M, C * K_H * K_W) * (C * K_H * K_W, H * W) -> (M, C, H)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
input_grad_batch
,
T
(
0.0
));
...
...
@@ -210,6 +216,10 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
// filter gradient required
if
(
filter_grad
)
{
Tensor
col_matrix_f
=
col
;
DDim
col_matrix_shape_f
=
{
C
*
H
*
W
,
K_H
*
K_W
};
col_matrix_f
.
Resize
(
col_matrix_shape_f
);
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
filter_grad_
=
*
filter_grad
;
filter_grad_
.
Resize
(
filter_matrix_shape
);
...
...
@@ -223,10 +233,12 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
// input batch
Tensor
in_batch
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// im2col: (C *
K_H * K_W, H *
W)
im2col
(
context
.
device_context
(),
output_grad_batch
,
col_matrix
,
// im2col: (C *
H * W, K_H * K_
W)
im2col
(
context
.
device_context
(),
output_grad_batch
,
col_matrix
_f
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
]);
// gemm: d_filter = x * y_grad^T
// (M, C * H * W) * (K_H * K_W, C * H * W) -> (M, C, H)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
in_batch
,
false
,
col_matrix
,
true
,
T
(
1.0
),
&
filter_grad_
,
T
(
1.0
));
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录