selected_rows_functor.cc 31.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/selected_rows_functor.h"
16

L
lidanqing 已提交
17 18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif

21 22 23 24
namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
25 26
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
27 28 29
                  const pten::SelectedRows& input1,
                  const pten::SelectedRows& input2,
                  pten::SelectedRows* output) {
30
    auto in1_height = input1.height();
31 32 33 34 35 36
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
54 55 56 57 58 59 60 61 62 63 64 65
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
66 67

    auto in1_place = input1.place();
68 69 70
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
71
    auto in2_place = input2.place();
72 73 74
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
75
    auto out_place = context.GetPlace();
76 77 78
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
79 80 81

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
82
    memory::Copy(out_place, out_data, in1_place, in1_data,
83 84 85
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
86
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
87 88 89 90
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
91 92
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
93 94

template <typename T>
Q
QI JUN 已提交
95 96
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
97
                  const pten::SelectedRows& input1,
98 99 100 101
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
102 103 104 105 106 107 108 109 110 111 112 113
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
114 115 116 117 118

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
119 120 121 122 123 124 125 126 127 128 129 130
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
131

132
    pten::funcs::SetConstant<platform::CPUDeviceContext, T> functor;
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
147
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
148 149 150
  }
};

Q
QI JUN 已提交
151 152
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
153 154

template <typename T>
Q
QI JUN 已提交
155 156
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
157 158
                  const pten::SelectedRows& input1, const int64_t input2_offset,
                  pten::SelectedRows* input2) {
Q
QI JUN 已提交
159
    auto in1_height = input1.height();
160 161 162 163 164 165
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
166 167 168 169 170 171 172 173

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Yu Yang 已提交
174
    in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
175 176

    auto in1_place = input1.place();
177 178 179
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
180
    auto in2_place = input2->place();
181 182 183
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
184 185 186

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
187
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
188 189 190 191
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
192 193 194 195
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
196

M
minqiyang 已提交
197 198 199
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
200
                  const std::vector<pten::SelectedRows*>& input1,
M
minqiyang 已提交
201
                  const std::vector<int64_t>& input2_offsets,
202
                  pten::SelectedRows* input2) {
M
minqiyang 已提交
203 204 205 206 207 208
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
209 210 211 212 213 214
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
215 216 217 218 219 220 221 222 223 224 225 226
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
227
    auto blas = pten::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
M
minqiyang 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
241
template <typename T>
Q
QI JUN 已提交
242 243
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
244
                  const pten::SelectedRows& input1, framework::Tensor* input2) {
Q
Qiao Longfei 已提交
245
    if (UNLIKELY(input1.rows().size() == 0)) {
246 247 248
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
249 250
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
251 252 253 254 255 256
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
257 258 259 260 261

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
262 263 264 265 266 267
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
281 282 283 284
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
285 286
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
                                        platform::bfloat16>;
287

T
typhoonzero 已提交
288 289 290 291 292 293 294 295
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

L
lidanqing 已提交
296
template <typename T>
297
typename std::enable_if<!std::is_integral<T>::value>::type elementwise_add_to(
298 299
    pten::funcs::BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len,
    const T* in, T* out) {
300
  blas->AXPY(data_len, T(1.f), in, out);
Q
Qiao Longfei 已提交
301 302
}

303 304
template <typename T>
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
305 306
    pten::funcs::BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len,
    const T* in, T* out) {
T
Tao Luo 已提交
307
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
308 309
    out[i] += in[i];
  }
T
typhoonzero 已提交
310 311
}

312 313
template <typename T>
typename std::enable_if<std::is_same<T, platform::bfloat16>::value>::type
314
add_sparse_inputs(const std::vector<const pten::SelectedRows*>& inputs,
315 316 317 318
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
                  int64_t input_width,
                  const platform::CPUDeviceContext& context, T* out_data) {
#ifndef PADDLE_WITH_MKLDNN
319
  auto blas = pten::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
#endif
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

#ifdef PADDLE_WITH_MKLDNN
    OneDNNAXPYHandler<T> axpy_handler(input_width, T(1.f));
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      axpy_handler(&input_data[i * input_width],
                   &out_data[out_i * input_width]);
    }
#else
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                            &input_data[i * input_width],
                            &out_data[out_i * input_width]);
    }
#endif
  }
}

template <typename T>
typename std::enable_if<!std::is_same<T, platform::bfloat16>::value>::type
348
add_sparse_inputs(const std::vector<const pten::SelectedRows*>& inputs,
349 350 351 352
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
                  int64_t input_width,
                  const platform::CPUDeviceContext& context, T* out_data) {
  VLOG(4) << "[CPU] add_sparse_inputs <" << typeid(T).name();
353
  auto blas = pten::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                            &input_data[i * input_width],
                            &out_data[out_i * input_width]);
    }
  }
}

T
typhoonzero 已提交
370 371
template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
372 373 374 375
  pten::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                const pten::SelectedRows& input,
                                const bool sorted_result = false) {
    pten::SelectedRows out;
376
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
377 378 379 380
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
381
                  const pten::SelectedRows& input, pten::SelectedRows* output,
382
                  const bool sorted_result = false) {
383
    std::vector<const pten::SelectedRows*> inputs;
384
    inputs.push_back(&input);
385
    (*this)(context, inputs, output, sorted_result);
386
  }
T
typhoonzero 已提交
387

388
  void operator()(const platform::CPUDeviceContext& context,
389 390
                  const std::vector<const pten::SelectedRows*>& inputs,
                  pten::SelectedRows* output,
391
                  const bool sorted_result = false) {
Q
Qiao Longfei 已提交
392
    if (inputs.size() == 0) {
M
minqiyang 已提交
393
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
394 395
      return;
    }
396
    const pten::SelectedRows* has_value_input = nullptr;
Q
Qiao Longfei 已提交
397
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
398
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
399 400 401 402 403
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
404
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
405 406 407 408
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
409
    pten::SelectedRows& out = *output;
410
    std::set<int64_t> merged_row_set;
411
    size_t row_num = 0;
412
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
413
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
414 415
        continue;
      }
416
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
417 418 419
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
420
      PADDLE_ENFORCE_EQ(input_height, input->height(),
421 422
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
423
      row_num += input->rows().size();
424 425
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
426

427
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
428
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
429
        framework::make_ddim(
430
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
431
        context.GetPlace());
432
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
433

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
449
        auto in_numel = in->rows().size() * input_width;
450
        memory::Copy(out_place, out_data + copied_numel, in_place, in_data,
451 452 453 454 455 456
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
457

458 459 460
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
461

462 463
      out.set_rows(merge_rows);

464
      pten::funcs::SetConstant<platform::CPUDeviceContext, T> constant_functor;
465
      constant_functor(context, out.mutable_value(), static_cast<T>(0.f));
466 467 468 469

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
470
      }
471

472
      add_sparse_inputs<T>(inputs, rows_to_id, input_width, context, out_data);
T
typhoonzero 已提交
473
    }
T
wip  
typhoonzero 已提交
474 475 476
  }
};

477 478 479
#ifdef PADDLE_WITH_XPU
template <typename T>
struct MergeAdd<platform::XPUDeviceContext, T> {
480 481 482 483
  pten::SelectedRows operator()(const platform::XPUDeviceContext& context,
                                const pten::SelectedRows& input,
                                const bool sorted_result = false) {
    pten::SelectedRows out;
484 485 486 487 488
    (*this)(context, input, &out, sorted_result);
    return out;
  }

  void operator()(const platform::XPUDeviceContext& context,
489
                  const pten::SelectedRows& input, pten::SelectedRows* output,
490 491 492 493 494 495
                  const bool sorted_result = false) {
    framework::Vector<int64_t> input_rows(input.rows());
    if (input_rows.size() == 0) {
      return;
    }

496
    pten::SelectedRows& out = *output;
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
    std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
    auto input_width = input.value().dims()[1];

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());
    int r =
        xpu::constant<T>(context.x_context(), out.mutable_value()->data<T>(),
                         merge_rows.size() * input_width, static_cast<T>(0.f));
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External("XPU constant op return"
                                                 " wrong value[%d %s].",
                                                 r, XPUAPIErrorMsg[r]));

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    auto* out_data = out.mutable_value()->data<T>();
    auto* input_data = input.value().data<T>();
    int n = input_width;
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id[input_rows[i]];
      auto r = xpu::add(context.x_context(), &input_data[i * input_width],
                        &out_data[out_i * input_width],
                        &out_data[out_i * input_width], n);
      PADDLE_ENFORCE_EQ(
          r, XPU_SUCCESS,
          platform::errors::External("XPU API return wrong value[%d %s], ", r,
                                     XPUAPIErrorMsg[r]));
    }
  }

  void operator()(const platform::XPUDeviceContext& context,
536 537
                  const std::vector<const pten::SelectedRows*>& inputs,
                  pten::SelectedRows* output,
538 539 540 541 542
                  const bool sorted_result = false) {
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
543
    const pten::SelectedRows* has_value_input = nullptr;
544 545 546 547 548 549 550 551 552 553 554 555
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
556
    pten::SelectedRows& out = *output;
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());

    if (sorted_result) {
      std::sort(merge_rows.begin(), merge_rows.end());
    }

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());

    int r =
        xpu::constant<T>(context.x_context(), out.mutable_value()->data<T>(),
                         merge_rows.size() * input_width, static_cast<T>(0.f));
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External("XPU constant op return"
                                                 " wrong value[%d %s].",
                                                 r, XPUAPIErrorMsg[r]));

    float* out_data = reinterpret_cast<float*>(out.mutable_value()->data<T>());

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto& input_rows = input->rows();

      int n = input_width;
      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
        auto r = xpu::add(
            context.x_context(), input->value().data<T>() + i * input_width,
            &out_data[out_i * input_width], &out_data[out_i * input_width], n);
        PADDLE_ENFORCE_EQ(
            r, XPU_SUCCESS,
            platform::errors::External("XPU API return wrong value[%d %s], ", r,
                                       XPUAPIErrorMsg[r]));
      }
    }
  }
};

#endif
625 626
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
627 628 629
  pten::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                const pten::SelectedRows& input) {
    pten::SelectedRows out;
630 631 632 633 634
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
635 636
                  const pten::SelectedRows& input, pten::SelectedRows* output) {
    std::vector<const pten::SelectedRows*> inputs;
637 638 639 640 641
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
642 643
                  const std::vector<const pten::SelectedRows*>& inputs,
                  pten::SelectedRows* output) {
644 645 646 647
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
648
    const pten::SelectedRows* has_value_input = nullptr;
649 650 651 652 653 654 655 656 657 658 659 660
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
661
    pten::SelectedRows& out = *output;
662 663 664 665 666 667 668
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
669 670 671
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
672
      PADDLE_ENFORCE_EQ(input_height, input->height(),
673 674
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

692
    pten::funcs::SetConstant<platform::CPUDeviceContext, T> constant_functor;
693 694 695 696 697 698 699
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

700
    auto blas = pten::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
701 702 703 704 705 706 707 708 709
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
710 711 712
        elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                              &input_data[i * input_width],
                              &out_data[out_i * input_width]);
713 714 715 716 717 718 719 720 721 722 723 724
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

T
wip  
typhoonzero 已提交
725 726
template struct MergeAdd<platform::CPUDeviceContext, int>;
template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
Q
Qiao Longfei 已提交
727 728
template struct MergeAdd<platform::CPUDeviceContext, float>;
template struct MergeAdd<platform::CPUDeviceContext, double>;
729
template struct MergeAdd<platform::CPUDeviceContext,
730
                         paddle::platform::complex<float>>;
731
template struct MergeAdd<platform::CPUDeviceContext,
732
                         paddle::platform::complex<double>>;
733 734
template struct MergeAdd<platform::CPUDeviceContext,
                         paddle::platform::bfloat16>;
T
wip  
typhoonzero 已提交
735

736 737 738 739
#ifdef PADDLE_WITH_XPU
template struct MergeAdd<platform::XPUDeviceContext, float>;
#endif

740 741 742 743 744
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
745 746
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
747
  void operator()(const platform::CPUDeviceContext& context,
748
                  const ScatterOps& op, const pten::SelectedRows& input1,
T
typhoonzero 已提交
749
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
750 751
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
752 753 754 755 756 757
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
758 759 760 761 762

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
763 764 765 766 767 768
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
813 814 815 816
  }
};

}  // namespace scatter
817 818 819
}  // namespace math
}  // namespace operators
}  // namespace paddle