未验证 提交 773aabc7 编写于 作者: L lidanqing 提交者: GitHub

Add AXPY oneDNN handler (#33632)

* Add oneDNN AXPY handler.

* Add fallback for small tensors.

* Fix ifdefs

* Remove unnecessary namespace prefixes and add missing headers.

* Guard handler_axpy with proper ifdefs.

* Compilation of this function is possible only when Paddle is not build
with CUDA nor HIP.

* Move AXPY handler code to separate files.

* Use oneDNN AXPY handler in SGD op.

* Use axpy handler only when Paddle is built with oneDNN.

* Add test for SUM BF16 with big rows.

* Fix SFINAE rules for elementwise_add_to.

* Add test case for SGD with big rows.

* update

* update
Co-authored-by: NAdam Osewski <adam.osewski@intel.com>
上级 e0e0c0fa
......@@ -18,6 +18,9 @@ add_subdirectory(optimizers)
add_subdirectory(reduce_ops)
add_subdirectory(sequence_ops)
add_subdirectory(jit)
if(WITH_MKLDNN)
add_subdirectory(mkldnn)
endif()
if(WITH_DISTRIBUTE)
......
......@@ -56,7 +56,13 @@ cc_library(blas SRCS blas.cc DEPS cblas framework_proto device_context)
math_library(math_function DEPS blas)
math_library(maxouting)
math_library(pooling)
math_library(selected_rows_functor DEPS selected_rows math_function blas)
if(WITH_MKLDNN)
math_library(selected_rows_functor DEPS selected_rows math_function blas mkldnn_axpy_handler)
else()
math_library(selected_rows_functor DEPS selected_rows math_function blas)
endif()
math_library(sequence2batch)
math_library(sequence_padding)
math_library(sequence_pooling DEPS math_function jit_kernel_helper)
......
......@@ -14,6 +14,10 @@ limitations under the License. */
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif
namespace paddle {
namespace operators {
namespace math {
......@@ -296,6 +300,24 @@ template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
// add or mul.
namespace scatter {
#ifdef PADDLE_WITH_MKLDNN
template <typename T>
typename std::enable_if<std::is_same<T, float>::value ||
std::is_same<T, platform::bfloat16>::value>::type
elementwise_add_to(BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len,
const T* in, T* out) {
onednn_handler_axpy(data_len, T(1.f), in, out);
}
template <typename T>
typename std::enable_if<std::is_same<T, double>::value ||
std::is_same<T, platform::complex<float>>::value ||
std::is_same<T, platform::complex<double>>::value>::type
elementwise_add_to(BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len,
const T* in, T* out) {
blas->AXPY(data_len, T(1.f), in, out);
}
#else
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value ||
std::is_same<T, platform::complex<float>>::value ||
......@@ -304,6 +326,7 @@ elementwise_add_to(BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len,
const T* in, T* out) {
blas->AXPY(data_len, T(1.f), in, out);
}
#endif
template <typename T>
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
......
cc_library(mkldnn_axpy_handler SRCS axpy_handler.cc DEPS place device_context enforce)
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cinttypes>
#include <memory>
#include <string>
#include <vector>
#include "mkldnn.hpp"
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace operators {
namespace plat = paddle::platform;
namespace {
template <typename T>
class AXPYMKLDNNHandler : public plat::MKLDNNHandlerT<T, dnnl::reorder> {
public:
AXPYMKLDNNHandler(const plat::MKLDNNDeviceContext &dev_ctx,
const dnnl::engine mkldnn_engine, plat::Place cpu_place,
int n, float alpha)
: plat::MKLDNNHandlerT<T, dnnl::reorder>(
dev_ctx, mkldnn_engine, cpu_place,
plat::CreateKey(dev_ctx, static_cast<int64_t>(n),
plat::MKLDNNGetDataType<T>(), alpha, "-axpy")),
alpha_(alpha),
n_(n) {}
std::shared_ptr<dnnl::memory> AcquireMemory(void *ptr,
const std::string &suffix) {
/*Generate key*/
auto local_key = this->key_ + suffix;
auto mem_p = std::static_pointer_cast<dnnl::memory>(
this->dev_ctx_.GetBlob(local_key));
if (mem_p == nullptr) {
auto md = dnnl::memory::desc({n_}, plat::MKLDNNGetDataType<T>(),
dnnl::memory::format_tag::x);
mem_p = std::make_shared<dnnl::memory>(md, this->engine_, ptr);
this->dev_ctx_.SetBlob(local_key, mem_p);
} else {
mem_p->set_data_handle(ptr);
}
return mem_p;
}
std::shared_ptr<dnnl::memory> AcquireSrcMemory(const T *x) {
return this->AcquireMemory(plat::to_void_cast(x), "@user_src_mem_p");
}
std::shared_ptr<dnnl::memory> AcquireDstMemory(T *y) {
return this->AcquireMemory(y, "@user_dst_mem_p");
}
std::shared_ptr<dnnl::reorder> AcquireReorder(
std::shared_ptr<dnnl::memory> dst_memory_p,
std::shared_ptr<dnnl::memory> src_memory_p) {
auto prim_key = this->key_ + "@reorder_p";
auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
this->dev_ctx_.GetBlob(prim_key));
if (reorder_p == nullptr) {
// Here we pass Postops to mimick y -> a*X + y
dnnl::primitive_attr reorder_attr;
dnnl::post_ops post_operations;
if (this->alpha_ != 1.f) {
std::vector<float> scales(1, this->alpha_);
reorder_attr.set_output_scales(0, scales);
}
post_operations.append_sum(1.0f);
reorder_attr.set_post_ops(post_operations);
reorder_p = std::make_shared<dnnl::reorder>(
*(src_memory_p), *(dst_memory_p), reorder_attr);
this->dev_ctx_.SetBlob(prim_key, reorder_p);
}
return reorder_p;
}
private:
float alpha_;
int n_;
};
template class AXPYMKLDNNHandler<float>;
template class AXPYMKLDNNHandler<plat::bfloat16>;
} // anonnymouse namespace
template <typename T>
static void naive_axpy(int n, T alpha, const T *x, T *y) {
while (n-- > 0) {
*y += alpha * *x;
++y;
++x;
}
}
template <typename T>
void onednn_handler_axpy(int n, T alpha, const T *x, T *y) {
// fallback to naive version
if (n < 100) {
naive_axpy(n, alpha, x, y);
return;
}
auto &pool = plat::DeviceContextPool::Instance();
auto cpu_place = plat::CPUPlace();
auto *dev_ctx =
dynamic_cast<plat::MKLDNNDeviceContext *>(pool.Get(cpu_place));
auto &cpu_engine = dev_ctx->GetEngine();
AXPYMKLDNNHandler<T> handler(*dev_ctx, cpu_engine, cpu_place, n,
static_cast<float>(alpha));
auto reorder_src_memory_p = handler.AcquireSrcMemory(x);
auto reorder_dst_memory_p = handler.AcquireDstMemory(y);
auto reorder_p =
handler.AcquireReorder(reorder_dst_memory_p, reorder_src_memory_p);
auto &astream = plat::MKLDNNDeviceContext::tls().get_stream();
plat::RecordEvent record_reorder("axpy_int_reorder",
plat::EventRole::kUniqueOp);
reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
astream.wait();
}
template void onednn_handler_axpy<float>(int, float, const float *, float *);
template void onednn_handler_axpy<plat::bfloat16>(int, plat::bfloat16,
const plat::bfloat16 *,
plat::bfloat16 *);
} // namespace operators
} // namespace paddle
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace paddle {
namespace operators {
///
/// @brief Helper function to execute AXPY using oneDNN.
///
/// @param[in] n The number of elements in tensor (assumed 1D)
/// @param[in] alpha The alpha coefficient.
/// @param[in] x The pointer to input X tensor.
/// @param y The pointer to output Y tensor.
///
/// @tparam T Data type.
///
template <typename T>
void onednn_handler_axpy(int n, T alpha, const T *x, T *y);
} // namespace operators
} // namespace paddle
......@@ -19,6 +19,9 @@ limitations under the License. */
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/var_type_traits.h"
#include "paddle/fluid/operators/jit/kernels.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif
#include "paddle/fluid/platform/bfloat16.h"
namespace paddle {
......@@ -139,9 +142,15 @@ struct sgd_dense_param_kernel<
"Got [%s], but expected less than [%s]",
grad_rows[i], grad_height));
const int64_t row = grad_rows[i];
#ifdef PADDLE_WITH_MKLDNN
operators::onednn_handler_axpy(grad_width, -lr[0],
grad_data + i * grad_width,
out_data + row * grad_width);
#else
for (int64_t j = 0; j < grad_width; ++j) {
out_data[row * grad_width + j] -= lr[0] * grad_data[i * grad_width + j];
}
#endif
}
}
};
......
......@@ -158,6 +158,13 @@ class TestSparseGradSGDOpBF16Case2(TestSparseGradSGDOpBF16):
self.grad_row_numel = 16
class TestSparseGradSGDOpBF16Case3(TestSparseGradSGDOpBF16):
def setup_params(self):
self.grad_height = 10
self.grad_rows = [0, 4, 7]
self.grad_row_numel = 120
@unittest.skipIf(not core.supports_bfloat16(),
'place does not support BF16 evaluation')
class TestSparseGradParamSGDOpBF16(TestSparseSGDOpBF16):
......@@ -194,8 +201,6 @@ class TestSparseGradParamSGDOpBF16(TestSparseSGDOpBF16):
self.check_output(output, reference, atol=5e-3, rtol=1e-1)
@unittest.skipIf(not core.supports_bfloat16(),
'place does not support BF16 evaluation')
class TestSparseGradParamSGDOpBF16Case2(TestSparseGradParamSGDOpBF16):
def setup_params(self):
self.grad_height = 14
......
......@@ -211,6 +211,11 @@ class TestSelectedRowsSumBF16Op(TestSelectedRowsSumOp):
self.check_with_place(core.CPUPlace(), inplace)
class TestSelectedRowsSumBF16OpBigRow(TestSelectedRowsSumBF16Op):
def init_kernel_type(self):
self.row_numel = 102
class TestLoDTensorAndSelectedRowsOp(TestSelectedRowsSumOp):
def setUp(self):
self.height = 10
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册