conv_transpose_cudnn_op.cu 50.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
18 19 20
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
21
#include "paddle/fluid/operators/conv_cudnn_helper.h"
22
#endif
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#include "paddle/fluid/operators/conv_transpose_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/padding.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, int D>
static void DataTranspose(const framework::ExecutionContext& ctx,
                          const Tensor* input, Tensor* output,
                          const std::vector<int>& axis, int flag = 0) {
  auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
  math::Transpose<platform::CUDADeviceContext, T, D> transpose;
  auto in_dims = input->dims();
  std::vector<int64_t> input_transpose_vec;
  for (size_t i = 0; i < axis.size(); ++i) {
    if (flag == 0)
      input_transpose_vec.push_back(in_dims[axis[i]]);
    else
      input_transpose_vec.push_back(in_dims[i]);
  }
  framework::DDim input_transpose_dims(
      framework::make_ddim(input_transpose_vec));
  output->mutable_data<T>(input_transpose_dims, ctx.GetPlace());
  transpose(dev_ctx, *input, output, axis);
}

template <typename T>
class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
56 57 58
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
59 60 61 62 63 64 65 66 67 68 69 70 71
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    // cudnn v5 does not support dilations
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const T* filter_data = filter->data<T>();
    const std::string data_layout_str = ctx.Attr<std::string>("data_format");
W
wuhuanzhou 已提交
72 73 74
    const paddle::platform::DataLayout data_layout =
        (data_layout_str != "NHWC" ? platform::DataLayout::kNCHW
                                   : platform::DataLayout::kNHWC);
75 76 77 78 79

    // if channel_last, transpose to channel_first
    Tensor input_transpose;
    std::vector<int> input_vec = framework::vectorize<int>(input->dims());
    std::vector<int> output_vec = framework::vectorize<int>(output->dims());
W
wuhuanzhou 已提交
80
    if (data_layout == platform::DataLayout::kNHWC) {
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 3, 1, 2};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output->dims()[axis[i]];
        }
        DataTranspose<T, 4>(ctx, input, &input_transpose, axis);
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 4, 1, 2, 3};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output->dims()[axis[i]];
        }
        DataTranspose<T, 5>(ctx, input, &input_transpose, axis);
      }
    } else {
      input_transpose = *input;
    }

    // update padding and dilation
    auto in_dims = input_transpose.dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
112
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    std::vector<int> input_pad(input_transpose.dims().size() * 2, 0);
    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = input_transpose.dims()[0];
      new_input_shape_vec[1] = input_transpose.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            input_transpose.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = input_transpose.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, input_transpose, pad_value, &transformed_input);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, input_transpose, pad_value, &transformed_input);
        } break;
        default:
152 153
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Op(ConvTranspose) only supports 4-D or 5-D input Tensor."));
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      }
    } else {
      transformed_input = input_transpose;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    std::vector<int64_t> starts(data_dim, 0);
    std::vector<int64_t> ends(data_dim, 0);
    std::vector<int64_t> axes(data_dim, 0);
    for (size_t i = 0; i < data_dim; ++i) {
      starts[i] = input_pad[2 * i + 4] * (strides[i] + 1);
      ends[i] = starts[i] + output_vec[i + 2];
      axes[i] = i + 2;
    }

    const T* input_data = transformed_input.data<T>();
    input_vec = framework::vectorize<int>(transformed_input.dims());

    std::vector<int> transformed_output_vec = output_vec;
    for (size_t i = 0; i < data_dim; ++i) {
      transformed_output_vec[i + 2] =
          output_vec[i + 2] +
          (input_pad[2 * i + 4] + input_pad[2 * i + 5]) * strides[i] -
          2 * padding_common[i] + paddings[2 * i] + paddings[2 * i + 1];
    }

    Tensor transformed_output;
    if (!is_sys_pad) {
      DDim transformed_output_shape(
          framework::make_ddim(transformed_output_vec));
      transformed_output.mutable_data<T>(transformed_output_shape,
                                         ctx.GetPlace());
    } else {
      output->mutable_data<T>(ctx.GetPlace());
      transformed_output.ShareDataWith(*output);
      transformed_output.Resize(framework::make_ddim(transformed_output_vec));
    }
    T* transformed_output_data = transformed_output.data<T>();

W
wuhuanzhou 已提交
201
    platform::DataLayout layout;
202

203 204
    int iwo_groups = groups;
    int c_groups = 1;
205
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
206 207 208 209 210
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif

211
    if (strides.size() == 2U) {
W
wuhuanzhou 已提交
212
      layout = platform::DataLayout::kNCHW;
213
    } else {
W
wuhuanzhou 已提交
214
      layout = platform::DataLayout::kNCDHW;
215 216
    }

217
    size_t workspace_size = 0;
218 219 220
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t algo{};
#else
221
    cudnnConvolutionBwdDataAlgo_t algo{};
222
#endif
223 224 225
    // ------------------- cudnn conv algorithm ---------------------
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
226 227
    auto layout_tensor = GetCudnnTensorFormat(layout);
    bool deterministic = FLAGS_cudnn_deterministic;
L
Lv Mengsi 已提交
228

229 230
    auto dtype = platform::CudnnDataType<T>::type;
    // ------------------- cudnn descriptors ---------------------
231 232 233 234 235 236 237
    ConvArgs args{&transformed_output,
                  filter,
                  &transformed_input,
                  strides,
                  padding_common,
                  dilations,
                  dtype};
238 239 240 241
    args.handle = handle;
    args.idesc.set(transformed_output, iwo_groups);
    args.wdesc.set(*filter, layout_tensor, iwo_groups);
    args.odesc.set(transformed_input, iwo_groups);
A
AshburnLee 已提交
242 243
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn(), c_groups);
244

245 246
#ifdef PADDLE_WITH_HIP
    using search = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
247 248
    workspace_size = std::max(workspace_size, search::GetWorkspaceSize(args));
    algo = search::Find<T>(args, false, deterministic, workspace_size, ctx);
249
#else
250
    using search = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
251
    algo = search::Find<T>(args, false, deterministic, ctx);
252 253
    workspace_size =
        std::max(workspace_size, search::GetWorkspaceSize(args, algo));
254
#endif
255 256 257 258 259 260 261

    // ------------------- cudnn conv transpose forward ---------------------
    int input_offset =
        transformed_input.numel() / transformed_input.dims()[0] / groups;
    int output_offset =
        transformed_output.numel() / transformed_output.dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
262 263
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;
264 265
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
    for (int g = 0; g < groups; g++) {
266 267 268 269 270 271 272 273 274 275 276
#ifdef PADDLE_WITH_HIP
      auto cudnn_func = [&](void* cudnn_workspace) {
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::miopenConvolutionBackwardData(
                handle, &alpha, args.odesc.desc(),
                input_data + input_offset * g, args.wdesc.desc(),
                filter_data + filter_offset * g, args.cdesc.desc(), algo, &beta,
                args.idesc.desc(), transformed_output_data + output_offset * g,
                cudnn_workspace, workspace_size));
      };
#else   // PADDLE_WITH_HIP
277
      auto cudnn_func = [&](void* cudnn_workspace) {
278 279
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnConvolutionBackwardData(
280 281 282 283
                handle, &alpha, args.wdesc.desc(),
                filter_data + filter_offset * g, args.odesc.desc(),
                input_data + input_offset * g, args.cdesc.desc(), algo,
                cudnn_workspace, workspace_size, &beta, args.idesc.desc(),
284
                transformed_output_data + output_offset * g));
285
      };
286
#endif  // PADDLE_WITH_HIP
287
      workspace_handle.RunFunc(cudnn_func, workspace_size);
288 289 290 291 292 293 294 295 296
    }
    if (!is_sys_pad && strides.size() == 2U) {
      Slice<paddle::platform::CUDADeviceContext, T, 4>(
          ctx, &transformed_output, output, starts, ends, axes);
    } else if (!is_sys_pad && strides.size() == 3U) {
      Slice<paddle::platform::CUDADeviceContext, T, 5>(
          ctx, &transformed_output, output, starts, ends, axes);
    }

W
wuhuanzhou 已提交
297
    if (data_layout == platform::DataLayout::kNHWC) {
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
      Tensor output_transpose;
      Tensor output_nchw;
      output_nchw.ShareDataWith(*output);
      output_nchw.Resize(framework::make_ddim(output_vec));
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 2, 3, 1};
        DataTranspose<T, 4>(ctx, &output_nchw, &output_transpose, axis);
        *output = output_transpose;
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 2, 3, 4, 1};
        DataTranspose<T, 5>(ctx, &output_nchw, &output_transpose, axis);
        *output = output_transpose;
      }
    }
  }
};

template <typename T>
class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
319 320 321
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    // cudnn v5 does not support dilations
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
    const std::string data_layout_str = ctx.Attr<std::string>("data_format");
W
wuhuanzhou 已提交
337 338 339
    const paddle::platform::DataLayout data_layout =
        (data_layout_str != "NHWC" ? platform::DataLayout::kNCHW
                                   : platform::DataLayout::kNHWC);
340 341 342 343 344 345 346

    // if channel_last, transpose to channel_first
    Tensor input_transpose;
    Tensor output_grad_transpose;
    std::vector<int> input_vec = framework::vectorize<int>(input->dims());
    std::vector<int> output_vec =
        framework::vectorize<int>(output_grad->dims());
W
wuhuanzhou 已提交
347
    if (data_layout == platform::DataLayout::kNHWC) {
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 3, 1, 2};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output_grad->dims()[axis[i]];
        }
        DataTranspose<T, 4>(ctx, input, &input_transpose, axis);
        DataTranspose<T, 4>(ctx, output_grad, &output_grad_transpose, axis);
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 4, 1, 2, 3};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output_grad->dims()[axis[i]];
        }
        DataTranspose<T, 5>(ctx, input, &input_transpose, axis);
        DataTranspose<T, 5>(ctx, output_grad, &output_grad_transpose, axis);
      }
    } else {
      input_transpose = *input;
      output_grad_transpose = *output_grad;
    }

    // update padding and dilation
    auto in_dims = input_transpose.dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
382
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

    std::vector<int> input_pad(input_transpose.dims().size() * 2, 0);
    Tensor transformed_output_grad;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_output_grad_shape_vec(data_dim + 2);
      new_output_grad_shape_vec[0] = output_grad_transpose.dims()[0];
      new_output_grad_shape_vec[1] = output_grad_transpose.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_output_grad_shape_vec[i + 2] =
            output_grad_transpose.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_output_grad_shape(
          framework::make_ddim(new_output_grad_shape_vec));
      transformed_output_grad.Resize(new_output_grad_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_output_grad =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_output_grad_shape, dev_ctx);
      const int rank = input_transpose.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, output_grad_transpose, pad_value,
              &transformed_output_grad);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, output_grad_transpose, pad_value,
              &transformed_output_grad);
        } break;
        default:
424 425
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Op(ConvTranspose) only supports 4-D or 5-D input Tensor."));
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
      }
    } else {
      transformed_output_grad = output_grad_transpose;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = input_transpose.data<T>();
    const T* output_grad_data = transformed_output_grad.data<T>();
    output_vec = framework::vectorize<int>(transformed_output_grad.dims());

    // ------------------- cudnn descriptors ---------------------
W
wuhuanzhou 已提交
445
    platform::DataLayout layout;
446 447

    if (strides.size() == 2U) {
W
wuhuanzhou 已提交
448
      layout = platform::DataLayout::kNCHW;
449
    } else {
W
wuhuanzhou 已提交
450
      layout = platform::DataLayout::kNCDHW;
451 452
    }

453 454
    int iwo_groups = groups;
    int c_groups = 1;
455
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
456 457 458 459
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

    auto dtype = platform::CudnnDataType<T>::type;

    ConvArgs args1{&transformed_output_grad,
                   filter,
                   &input_transpose,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{&transformed_output_grad,
                   filter,
                   &input_transpose,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
477 478 479 480 481

#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t data_algo{};
    miopenConvBwdWeightsAlgorithm_t filter_algo{};
#else
482 483
    cudnnConvolutionFwdAlgo_t data_algo{};
    cudnnConvolutionBwdFilterAlgo_t filter_algo{};
484
#endif
485 486 487

    auto layout_tensor = GetCudnnTensorFormat(layout);
    size_t workspace_size = 0;
488 489
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
490 491 492 493 494 495 496 497
    bool deterministic = FLAGS_cudnn_deterministic;
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;
    if (input_grad)
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
    if (filter_grad)
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());

498
    if (input_grad) {
499 500 501 502 503
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      args1.handle = handle;
      args1.idesc.set(transformed_output_grad, iwo_groups);
      args1.wdesc.set(*filter, layout_tensor, iwo_groups);
      args1.odesc.set(input_transpose, iwo_groups);
A
AshburnLee 已提交
504 505
      args1.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
506 507
#ifdef PADDLE_WITH_HIP
      using search1 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
508 509 510 511
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1));
      data_algo =
          search1::Find<T>(args1, false, deterministic, workspace_size, ctx);
512
#else
513
      using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
514
      data_algo = search1::Find<T>(args1, false, deterministic, ctx);
515 516
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
517
#endif
518 519 520
    }

    if (filter_grad) {
521 522 523 524 525
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      args2.handle = handle;
      args2.idesc.set(transformed_output_grad, iwo_groups);
      args2.wdesc.set(*filter_grad, layout_tensor, iwo_groups);
      args2.odesc.set(input_transpose, iwo_groups);
A
AshburnLee 已提交
526 527
      args2.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
528 529
#ifdef PADDLE_WITH_HIP
      using search2 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
530 531 532 533
      workspace_size =
          std::max(workspace_size, search2::GetWorkspaceSize(args2));
      filter_algo =
          search2::Find<T>(args2, false, deterministic, workspace_size, ctx);
534
#else
535
      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
536
      filter_algo = search2::Find<T>(args2, false, deterministic, ctx);
537 538
      workspace_size = std::max(workspace_size,
                                search2::GetWorkspaceSize(args2, filter_algo));
539
#endif
540 541 542 543 544 545 546 547
    }

    // ------------------- cudnn conv backward data ---------------------
    // FIXME(typhoonzero): template type T may not be the same as cudnn call.
    int input_offset = input->numel() / input->dims()[0] / groups;
    int output_grad_offset = transformed_output_grad.numel() /
                             transformed_output_grad.dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
548 549
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;
550 551 552 553
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
    if (input_grad) {
      // Because beta is zero, it is unnecessary to reset input_grad.
      for (int g = 0; g < groups; g++) {
554 555 556 557 558 559 560 561 562 563 564 565
#ifdef PADDLE_WITH_HIP
        auto cudnn_func = [&](void* cudnn_workspace) {
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::miopenConvolutionForward(
                  handle, &alpha, args1.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args1.wdesc.desc(),
                  filter_data + filter_offset * g, args1.cdesc.desc(),
                  data_algo, &beta, args1.odesc.desc(),
                  input_grad_data + input_offset * g, cudnn_workspace,
                  workspace_size));
        };
#else   // PADDLE_WITH_HIP
566
        auto cudnn_func = [&](void* cudnn_workspace) {
567 568
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::cudnnConvolutionForward(
569 570 571 572 573
                  handle, &alpha, args1.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args1.wdesc.desc(),
                  filter_data + filter_offset * g, args1.cdesc.desc(),
                  data_algo, cudnn_workspace, workspace_size, &beta,
                  args1.odesc.desc(), input_grad_data + input_offset * g));
574
        };
575
#endif  // PADDLE_WITH_HIP
576
        workspace_handle.RunFunc(cudnn_func, workspace_size);
577 578
      }

W
wuhuanzhou 已提交
579
      if (data_layout == platform::DataLayout::kNHWC) {
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        Tensor input_grad_transpose;
        Tensor input_grad_nchw;
        input_grad_nchw.ShareDataWith(*input_grad);
        input_grad_nchw.Resize(framework::make_ddim(input_vec));
        if (strides.size() == 2U) {
          std::vector<int> axis = {0, 2, 3, 1};
          DataTranspose<T, 4>(ctx, &input_grad_nchw, &input_grad_transpose,
                              axis);
          *input_grad = input_grad_transpose;
        } else if (strides.size() == 3U) {
          std::vector<int> axis = {0, 2, 3, 4, 1};
          DataTranspose<T, 5>(ctx, &input_grad_nchw, &input_grad_transpose,
                              axis);
          *input_grad = input_grad_transpose;
        }
      }
    }

    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      // Because beta is zero, it is unnecessary to reset filter_grad.
      // Gradient with respect to the filter
      for (int g = 0; g < groups; g++) {
603 604 605 606 607 608 609 610 611 612 613 614
#ifdef PADDLE_WITH_HIP
        auto cudnn_func = [&](void* cudnn_workspace) {
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::miopenConvolutionBackwardWeights(
                  handle, &alpha, args2.odesc.desc(),
                  input_data + input_offset * g, args2.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args2.cdesc.desc(),
                  filter_algo, &beta, args2.wdesc.desc(),
                  filter_grad_data + filter_offset * g, cudnn_workspace,
                  workspace_size));
        };
#else   // PADDLE_WITH_HIP
615
        auto cudnn_func = [&](void* cudnn_workspace) {
616 617
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::cudnnConvolutionBackwardFilter(
618 619 620 621 622
                  handle, &alpha, args2.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args2.odesc.desc(),
                  input_data + input_offset * g, args2.cdesc.desc(),
                  filter_algo, cudnn_workspace, workspace_size, &beta,
                  args2.wdesc.desc(), filter_grad_data + filter_offset * g));
623
        };
624
#endif  // PADDLE_WITH_HIP
625
        workspace_handle.RunFunc(cudnn_func, workspace_size);
626 627 628 629 630
      }
    }
  }
};

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv_bp_data(W, ddI) + conv_bp_data(ddW, I)
 * dW = conv_bp_filter(dO, ddI)
 * dI = conv(dO, ddW)
 */
template <typename T>
class CUDNNConvTransposeDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");

    if (ddO) {
      ddO->mutable_data<T>(ctx.GetPlace());
      math::SetConstant<platform::CUDADeviceContext, T> set_zero;
      set_zero(dev_ctx, ddO, static_cast<T>(0));
    }
    if (dW) {
      dW->mutable_data<T>(ctx.GetPlace());
    }
    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
    }

    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;
    T* transformed_dx = nullptr;
    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");

    bool deterministic = FLAGS_cudnn_deterministic;

    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensors to channel first-----------
    Tensor transformed_X_channel(X->type());
    Tensor transformed_dO_channel(dO->type());
    Tensor transformed_ddX_channel(X->type());

    Tensor transformed_ddO_channel(dO->type());
    Tensor transformed_dX_channel(X->type());

    if (channel_last) {
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);

      if (ddX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
        TransToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
      }

      if (ddO) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddO, &transformed_ddO_channel);
      }
      if (dX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, dX, &transformed_dX_channel);
        transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
      }

    } else {
      transformed_X_channel = *X;
      transformed_dO_channel = *dO;
      if (ddX) {
        transformed_ddX_channel = *ddX;
      }
      if (dX) {
        transformed_dX_channel = *dX;
      }
    }
    std::vector<int> output_vec =
        framework::vectorize<int>(transformed_dO_channel.dims());

    auto in_dims = transformed_X_channel.dims();
    auto filter_dims = W->dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
    Tensor transformed_X(X->type());
    Tensor transformed_ddX(X->type());

    Tensor transformed_dO(dO->type());

    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(X->dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      std::vector<int> new_output_grad_shape_vec(data_dim + 2);

      new_input_shape_vec[0] = transformed_X_channel.dims()[0];
      new_input_shape_vec[1] = transformed_X_channel.dims()[1];

      new_output_grad_shape_vec[0] = transformed_dO_channel.dims()[0];
      new_output_grad_shape_vec[1] = transformed_dO_channel.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_X_channel.dims()[i + 2] + padding_diff[i];

        new_output_grad_shape_vec[i + 2] =
            transformed_dO_channel.dims()[i + 2] + padding_diff[i];

        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_X.Resize(new_input_shape);
      transformed_ddX.Resize(new_input_shape);

      framework::DDim new_output_grad_shape(
          framework::make_ddim(new_output_grad_shape_vec));
      transformed_dO.Resize(new_output_grad_shape);

      transformed_dO =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_output_grad_shape, dev_ctx);

      transformed_X =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      if (ddX) {
        transformed_ddX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }

      // pad for input
      const int rank = X->dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
          if (dO) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_dO_channel, pad_value,
                &transformed_dO);
          }

          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
        } break;
        default:
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
      }

    } else {
      transformed_X = transformed_X_channel;
      transformed_dO = transformed_dO_channel;
      if (ddX) {
        transformed_ddX = transformed_ddX_channel;
      }

      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    std::vector<int64_t> starts(data_dim, 0);
    std::vector<int64_t> ends(data_dim, 0);
    std::vector<int64_t> axes(data_dim, 0);
    for (size_t i = 0; i < data_dim; ++i) {
      starts[i] = input_pad[2 * i + 4] * (strides[i] + 1);
      ends[i] = starts[i] + output_vec[i + 2];
      axes[i] = i + 2;
    }

    std::vector<int> transformed_output_vec = output_vec;
    for (size_t i = 0; i < data_dim; ++i) {
      transformed_output_vec[i + 2] =
          output_vec[i + 2] +
          (input_pad[2 * i + 4] + input_pad[2 * i + 5]) * strides[i] -
          2 * padding_common[i] + paddings[2 * i] + paddings[2 * i + 1];
    }

    if (!is_sys_pad) {
      DDim transformed_output_shape(
          framework::make_ddim(transformed_output_vec));
      transformed_ddO_channel.mutable_data<T>(transformed_output_shape,
                                              ctx.GetPlace());
    } else {
      ddO->mutable_data<T>(ctx.GetPlace());
      transformed_ddO_channel = *ddO;
      transformed_ddO_channel.Resize(
          framework::make_ddim(transformed_output_vec));
    }

    const T* x = transformed_X.data<T>();

    int iwo_group = groups;
    int c_group = 1;
#if CUDNN_VERSION_MIN(7, 0, 1)
    iwo_group = 1;
    c_group = groups;
    groups = 1;
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

    ConvArgs args1{&transformed_ddO_channel,
                   W,
                   &transformed_ddX,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{&transformed_ddO_channel, ddW,       &transformed_X, strides,
                   padding_common,           dilations, dtype};

    ConvArgs args3{&transformed_dO,
                   dW,
                   &transformed_ddX_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args4{
        &transformed_dO, ddW,  &transformed_dX_channel, strides, padding_common,
        dilations,       dtype};
916 917 918 919 920 921 922 923 924 925
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t bwd_algo1 =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdDataAlgorithm_t bwd_algo2 =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvFwdAlgorithm_t data_algo =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
926 927 928 929 930 931 932 933
    cudnnConvolutionBwdDataAlgo_t bwd_algo1 =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t bwd_algo2 =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t data_algo =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
934
#endif
935

W
wuhuanzhou 已提交
936
    auto layout = GetCudnnTensorFormat(platform::DataLayout::kNCHW);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;

    T* transformed_ddy_channel = nullptr;

    if (ddO) {
      ddy = ddO->data<T>();
      transformed_ddy_channel = transformed_ddO_channel.data<T>();
      if (ddX) {
        args1.handle = handle;
        args1.idesc.set(transformed_ddO_channel, iwo_group);
        args1.wdesc.set(*W, layout, iwo_group);
        args1.odesc.set(transformed_ddX, iwo_group);
        args1.cdesc.set(dtype, padding_common, strides, dilations, c_group);
952 953
#ifdef PADDLE_WITH_HIP
        using search1 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
954 955 956
        workspace_size = search1::GetWorkspaceSize(args1);
        bwd_algo1 =
            search1::Find<T>(args1, false, deterministic, workspace_size, ctx);
957
#else
958 959 960
        using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
        bwd_algo1 = search1::Find<T>(args1, false, deterministic, ctx);
        workspace_size = search1::GetWorkspaceSize(args1, bwd_algo1);
961
#endif
962 963 964 965 966 967 968 969 970
      }

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(transformed_ddO_channel, iwo_group);
        args2.wdesc.set(*ddW, layout, iwo_group);
        args2.odesc.set(transformed_X, iwo_group);
        args2.cdesc.set(dtype, padding_common, strides, dilations, c_group);
971 972
#ifdef PADDLE_WITH_HIP
        using search2 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
973 974 975 976
        workspace_size =
            std::max(workspace_size, search2::GetWorkspaceSize(args2));
        bwd_algo2 =
            search2::Find<T>(args2, false, deterministic, workspace_size, ctx);
977
#else
978 979 980 981
        using search2 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
        bwd_algo2 = search2::Find<T>(args2, false, deterministic, ctx);
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, bwd_algo2));
982
#endif
983 984 985 986 987 988 989 990 991 992 993 994
      }
    }

    if (dW && ddX) {
      dw = dW->data<T>();
      args3.handle = handle;
      args3.idesc.set(transformed_dO, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);

      args3.odesc.set(transformed_ddX_channel, iwo_group);

      args3.cdesc.set(dtype, padding_common, strides, dilations, c_group);
995 996
#ifdef PADDLE_WITH_HIP
      using search3 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
997 998 999 1000
      workspace_size =
          std::max(workspace_size, search3::GetWorkspaceSize(args3));
      filter_algo =
          search3::Find<T>(args3, false, deterministic, workspace_size, ctx);
1001
#else
1002 1003 1004 1005
      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo = search3::Find<T>(args3, false, deterministic, ctx);
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
1006
#endif
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    }

    if (ddW && dX) {
      transformed_dx = transformed_dX_channel.data<T>();

      args4.handle = handle;
      args4.idesc.set(transformed_dO, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(transformed_dX_channel, iwo_group);
      args4.cdesc.set(dtype, padding_common, strides, dilations, c_group);
1017 1018
#ifdef PADDLE_WITH_HIP
      using search4 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1019 1020 1021 1022
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4));
      data_algo =
          search4::Find<T>(args4, false, deterministic, workspace_size, ctx);
1023
#else
1024 1025 1026 1027
      using search4 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
      data_algo = search4::Find<T>(args4, false, deterministic, ctx);
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
1028
#endif
1029 1030 1031
    }

    int i_n, i_c, i_d, i_h, i_w;
W
wuhuanzhou 已提交
1032 1033
    GetNCDHW(transformed_X.dims(), platform::DataLayout::kNCHW, &i_n, &i_c,
             &i_d, &i_h, &i_w);
1034 1035

    int o_n, o_c, o_d, o_h, o_w;
W
wuhuanzhou 已提交
1036 1037
    GetNCDHW(transformed_dO.dims(), platform::DataLayout::kNCHW, &o_n, &o_c,
             &o_d, &o_h, &o_w);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

    int group_offset_in =
        transformed_X.numel() / transformed_X.dims()[0] / groups;
    int group_offset_out =
        transformed_dO.numel() / transformed_dO.dims()[0] / groups;
    int group_offset_filter = W->numel() / groups;

    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;

    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      if (ddX) {
        ddx = transformed_ddX.data<T>();
        for (int i = 0; i < groups; i++) {
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
#ifdef PADDLE_WITH_HIP
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::miopenConvolutionBackwardData(
                        handle, &alpha, args1.odesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        bwd_algo1, &beta, args1.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out,
                        workspace_ptr, workspace_size));
              },
              workspace_size);
#else   // PADDLE_WITH_HIP
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionBackwardData(
                        handle, &alpha, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.odesc.desc(),
                        ddx + i * group_offset_in, args1.cdesc.desc(),
                        bwd_algo1, workspace_ptr, workspace_size, &beta,
                        args1.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
              },
              workspace_size);
1080
#endif  // PADDLE_WITH_HIP
1081 1082 1083 1084
        }
      }
      if (ddW) {
        for (int i = 0; i < groups; i++) {
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
#ifdef PADDLE_WITH_HIP
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::miopenConvolutionBackwardData(
                        handle, &alpha, args2.odesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
                        bwd_algo2, &alpha, args2.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out,
                        workspace_ptr, workspace_size));
              },
              workspace_size);
#else   // PADDLE_WITH_HIP
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionBackwardData(
                        handle, &alpha, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.odesc.desc(),
                        x + i * group_offset_in, args2.cdesc.desc(), bwd_algo2,
                        workspace_ptr, workspace_size, &alpha,
                        args2.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
              },
              workspace_size);
1111
#endif  // PADDLE_WITH_HIP
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        }
      }
      if ((!is_sys_pad) && (!channel_last)) {
        if (strides.size() == 2U) {
          Slice<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, &transformed_ddO_channel, ddO, starts, ends, axes);
        } else if (!is_sys_pad && strides.size() == 3U) {
          Slice<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, &transformed_ddO_channel, ddO, starts, ends, axes);
        }
      } else if ((!is_sys_pad) && (channel_last)) {
        if (strides.size() == 2U) {
          Slice<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, &transformed_ddO_channel, &transformed_ddO_channel, starts,
              ends, axes);
        } else if (!is_sys_pad && strides.size() == 3U) {
          Slice<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, &transformed_ddO_channel, &transformed_ddO_channel, starts,
              ends, axes);
        }

        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_ddO_channel, ddO);
      }
    }

    T* transformed_dy_channel = transformed_dO.data<T>();
    if (dW && ddX) {
      ddx = transformed_ddX_channel.data<T>();
      for (int i = 0; i < groups; i++) {
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
#ifdef PADDLE_WITH_HIP
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardWeights(
                      handle, &alpha, args3.odesc.desc(),
                      ddx + i * group_offset_in, args3.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.cdesc.desc(), filter_algo, &beta,
                      args3.wdesc.desc(), dw + i * group_offset_filter,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
#else   // PADDLE_WITH_HIP
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args3.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.odesc.desc(), ddx + i * group_offset_in,
                      args3.cdesc.desc(), filter_algo, workspace_ptr,
                      workspace_size, &beta, args3.wdesc.desc(),
                      dw + i * group_offset_filter));
            },
            workspace_size);
1168
#endif  // PADDLE_WITH_HIP
1169 1170 1171 1172 1173 1174
      }
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
      for (int i = 0; i < groups; i++) {
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
#ifdef PADDLE_WITH_HIP
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args4.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.wdesc.desc(), ddw + i * group_offset_filter,
                      args4.cdesc.desc(), data_algo, &beta, args4.odesc.desc(),
                      transformed_dx + i * group_offset_in, workspace_ptr,
                      workspace_size));
            },
            workspace_size);
#else   // PADDLE_WITH_HIP
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionForward(
                      handle, &alpha, args4.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.wdesc.desc(), ddw + i * group_offset_filter,
                      args4.cdesc.desc(), data_algo, workspace_ptr,
                      workspace_size, &beta, args4.odesc.desc(),
                      transformed_dx + i * group_offset_in));
            },
            workspace_size);
1201
#endif  // PADDLE_WITH_HIP
1202 1203 1204 1205 1206 1207 1208 1209 1210
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_dX_channel, dX);
      }
    }
  }
};

1211 1212 1213 1214
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1215
namespace plat = paddle::platform;
1216

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeOpKernel<float>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeGradOpKernel<float>);
REGISTER_OP_KERNEL(
    conv2d_transpose_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeOpKernel<float>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeGradOpKernel<float>);
#else
1237
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
1238
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
1239 1240 1241
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
1242
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
1243 1244
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);
1245 1246 1247 1248 1249
REGISTER_OP_KERNEL(
    conv2d_transpose_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<plat::float16>);
1250 1251

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
1252
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
1253 1254 1255
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
1256
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
1257 1258
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);
1259
#endif