test_while_op.py 8.3 KB
Newer Older
C
chengduoZH 已提交
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yang Yang(Tony) 已提交
15
import unittest
16 17 18

import numpy

L
Leo Chen 已提交
19
import paddle
20 21
from paddle import fluid
from paddle.fluid import core, layers
22
from paddle.fluid.backward import append_backward
23
from paddle.fluid.executor import Executor
Y
Yang Yang(Tony) 已提交
24

25 26
paddle.enable_static()

Y
Yang Yang(Tony) 已提交
27 28

class TestWhileOp(unittest.TestCase):
29
    def simple_net(self):
G
GGBond8488 已提交
30 31 32
        d0 = paddle.static.data("d0", shape=[10], dtype='float32')
        d1 = paddle.static.data("d1", shape=[10], dtype='float32')
        d2 = paddle.static.data("d2", shape=[10], dtype='float32')
Y
Yang Yang(Tony) 已提交
33 34 35
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
        init = layers.zeros(shape=[10], dtype='float32')
36 37
        mem_array = paddle.tensor.array_write(x=init, i=i)
        data_array = paddle.tensor.array_write(x=d0, i=i)
38
        i = paddle.increment(i)
39
        paddle.tensor.array_write(d1, i, array=data_array)
40
        i = paddle.increment(i)
41
        paddle.tensor.array_write(d2, i, array=data_array)
Y
Yang Yang(Tony) 已提交
42 43
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
44 45 46
        array_len = paddle.tensor.fill_constant(
            shape=[1], dtype='int64', value=1
        )
Y
Yang Yang(Tony) 已提交
47
        array_len.stop_gradient = True
L
LiYuRio 已提交
48
        cond = paddle.less_than(x=i, y=array_len)
49
        j = paddle.tensor.fill_constant(shape=[1], dtype='int64', value=1)
C
chengduoZH 已提交
50
        j.stop_gradient = True
51 52 53
        array_len2 = paddle.tensor.fill_constant(
            shape=[1], dtype='int64', value=3
        )
C
chengduoZH 已提交
54
        array_len2.stop_gradient = True
L
LiYuRio 已提交
55
        cond2 = paddle.less_than(x=j, y=array_len2)
56 57
        while_op = paddle.static.nn.control_flow.While(cond=cond)
        while_op2 = paddle.static.nn.control_flow.While(cond=cond2)
Y
Yang Yang(Tony) 已提交
58
        with while_op.block():
59 60
            d = paddle.tensor.array_read(array=data_array, i=i)
            prev = paddle.tensor.array_read(array=mem_array, i=i)
61
            result = paddle.add_n([d, prev])
Y
Yang Yang(Tony) 已提交
62

63
            i = paddle.increment(x=i)
64
            paddle.tensor.array_write(result, i=i, array=mem_array)
L
LiYuRio 已提交
65
            paddle.assign(paddle.less_than(x=i, y=array_len), cond)
Y
Yang Yang(Tony) 已提交
66

C
chengduoZH 已提交
67
            with while_op2.block():
68 69
                d2 = paddle.tensor.array_read(array=data_array, i=j)
                prev2 = paddle.tensor.array_read(array=mem_array, i=j)
70
                result2 = paddle.add_n([d2, prev2])
C
chengduoZH 已提交
71

72
                j = paddle.increment(x=j)
73
                paddle.tensor.array_write(result2, i=j, array=mem_array)
L
LiYuRio 已提交
74
                paddle.assign(paddle.less_than(x=j, y=array_len2), cond2)
75
        sum_result = paddle.tensor.array_read(array=mem_array, i=j)
76
        loss = paddle.mean(sum_result)
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        return loss, sum_result

    def test_simple_net(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            loss, sum_result = self.simple_net()

            append_backward(loss)

            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []

            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))

94 95 96 97
            outs = exe.run(
                feed={'d0': d[0], 'd1': d[1], 'd2': d[2]},
                fetch_list=[sum_result],
            )
98
            self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01)
Y
Yang Yang(Tony) 已提交
99

100 101 102 103 104 105
    def test_simple_net_forward(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            self.simple_net()
            binary = fluid.compiler.CompiledProgram(main_program)
Y
Yang Yang(Tony) 已提交
106

107 108 109
            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []
Y
Yang Yang(Tony) 已提交
110

111 112
            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))
Y
Yang Yang(Tony) 已提交
113

114 115
            for _ in range(2):
                exe.run(binary, feed={'d0': d[0], 'd1': d[1], 'd2': d[2]})
Y
Yang Yang(Tony) 已提交
116

117 118
    def test_exceptions(self):
        i = layers.zeros(shape=[2], dtype='int64')
119 120 121
        array_len = paddle.tensor.fill_constant(
            shape=[2], dtype='int64', value=1
        )
L
LiYuRio 已提交
122
        cond = paddle.less_than(x=i, y=array_len)
123
        with self.assertRaises(TypeError):
124
            paddle.static.nn.control_flow.While(cond=cond)
125
        cond = paddle.cast(cond, dtype='float64')
126
        with self.assertRaises(TypeError):
127
            paddle.static.nn.control_flow.While(cond=cond)
128

Y
Yang Yang(Tony) 已提交
129

130 131 132 133 134 135
class BadInputTest(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
                x = [1, 2, 3]
136
                paddle.increment(x)
137 138 139 140

            self.assertRaises(TypeError, test_bad_x)


141 142 143 144 145 146 147 148 149 150 151 152
class TestIgnoreVarNameInWhile(unittest.TestCase):
    def test_ignore_var(self):
        def cond(i, ten, temp, y):
            return i < ten

        def body_func(i, ten, batch_info, origin_seq):
            print(batch_info)
            batch_info = fluid.contrib.layers.shuffle_batch(batch_info)
            print(batch_info)
            i = i + 1
            return [i, ten, batch_info, origin_seq]

G
GGBond8488 已提交
153 154 155 156
        x = paddle.static.data(name='x', shape=[-1, 1, 4], dtype='float32')
        y = paddle.static.data(name='y', shape=[-1, 1, 1], dtype='float32')
        x.desc.set_need_check_feed(False)
        y.desc.set_need_check_feed(False)
157 158
        temp = paddle.concat([x, y], axis=-1)

159 160
        i = paddle.tensor.fill_constant(shape=[1], value=0, dtype='int32')
        num = paddle.tensor.fill_constant(shape=[1], value=5, dtype='int32')
161

162
        i, ten, shuffle_temp, y = paddle.static.nn.while_loop(
163 164
            cond, body_func, [i, num, temp, y]
        )
165 166 167 168 169 170 171 172 173 174 175

        output = shuffle_temp

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        input_x = numpy.array([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10]])
        input_x = input_x.reshape(3, 1, 4)
        input_y = numpy.array([[10], [12], [33]])
        input_y = input_y.reshape(3, 1, 1)

176 177 178 179 180
        (res,) = exe.run(
            fluid.default_main_program(),
            feed={'x': input_x, 'y': input_y},
            fetch_list=[output],
        )
181 182 183 184

        self.assertListEqual(list(res.shape), [3, 1, 5])


185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class TestOutputsMustExistsInputs(unittest.TestCase):
    def test_outputs_exists_inputs(self):
        """
        We guarantee that the output tensor must be in the input tensor, so that the output and input can correspond to each other, but the input can be greater than the number of outputs. It's required in paddle2onnx.
        """
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):

            def func(x):
                s = paddle.zeros([1])
                i = paddle.ones([1])
                max_len = paddle.shape(x)[0]

                def cond(i, s, x):
                    return i < max_len

                def body(i, s, x):
                    iter = x[i]
                    s += iter
                    i += 1
                    return i, s, x

                [i, s, x] = paddle.static.nn.while_loop(cond, body, [i, s, x])
                return s

            paddle.enable_static()
G
GGBond8488 已提交
212
            x = paddle.static.data(shape=[-1], name='x', dtype='float32')
213 214 215 216
            func(x)
        for op in main_program.block(0).ops:
            if op.type == "while":
                for out_name in op.output("Out"):
217 218
                    if out_name in op.input("Condition"):
                        continue
219 220
                    self.assertTrue(
                        out_name in op.input("X"),
221 222 223 224
                        "In while op, the variable in output(`Out`) must exists in inputs(`X`), but the variable with name `{}` not meet the precondition.".format(
                            out_name
                        ),
                    )
225 226


Y
Yang Yang(Tony) 已提交
227 228
if __name__ == '__main__':
    unittest.main()