test_while_op.py 8.2 KB
Newer Older
C
chengduoZH 已提交
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yang Yang(Tony) 已提交
15
import unittest
16 17 18

import numpy

L
Leo Chen 已提交
19
import paddle
20
import paddle.fluid as fluid
21 22
import paddle.fluid.core as core
import paddle.fluid.layers as layers
23
from paddle.fluid.backward import append_backward
24
from paddle.fluid.executor import Executor
Y
Yang Yang(Tony) 已提交
25

26 27
paddle.enable_static()

Y
Yang Yang(Tony) 已提交
28 29

class TestWhileOp(unittest.TestCase):
30
    def simple_net(self):
G
GGBond8488 已提交
31 32 33
        d0 = paddle.static.data("d0", shape=[10], dtype='float32')
        d1 = paddle.static.data("d1", shape=[10], dtype='float32')
        d2 = paddle.static.data("d2", shape=[10], dtype='float32')
Y
Yang Yang(Tony) 已提交
34 35 36
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
        init = layers.zeros(shape=[10], dtype='float32')
37 38
        mem_array = paddle.tensor.array_write(x=init, i=i)
        data_array = paddle.tensor.array_write(x=d0, i=i)
39
        i = paddle.increment(i)
40
        paddle.tensor.array_write(d1, i, array=data_array)
41
        i = paddle.increment(i)
42
        paddle.tensor.array_write(d2, i, array=data_array)
Y
Yang Yang(Tony) 已提交
43 44
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
C
chengduoZH 已提交
45
        array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
Y
Yang Yang(Tony) 已提交
46
        array_len.stop_gradient = True
L
LiYuRio 已提交
47
        cond = paddle.less_than(x=i, y=array_len)
C
chengduoZH 已提交
48 49 50 51
        j = layers.fill_constant(shape=[1], dtype='int64', value=1)
        j.stop_gradient = True
        array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
        array_len2.stop_gradient = True
L
LiYuRio 已提交
52
        cond2 = paddle.less_than(x=j, y=array_len2)
53 54
        while_op = paddle.static.nn.control_flow.While(cond=cond)
        while_op2 = paddle.static.nn.control_flow.While(cond=cond2)
Y
Yang Yang(Tony) 已提交
55
        with while_op.block():
56 57
            d = paddle.tensor.array_read(array=data_array, i=i)
            prev = paddle.tensor.array_read(array=mem_array, i=i)
Y
Yang Yang(Tony) 已提交
58
            result = layers.sums(input=[d, prev])
Y
Yang Yang(Tony) 已提交
59

60
            i = paddle.increment(x=i)
61
            paddle.tensor.array_write(result, i=i, array=mem_array)
L
LiYuRio 已提交
62
            paddle.assign(paddle.less_than(x=i, y=array_len), cond)
Y
Yang Yang(Tony) 已提交
63

C
chengduoZH 已提交
64
            with while_op2.block():
65 66
                d2 = paddle.tensor.array_read(array=data_array, i=j)
                prev2 = paddle.tensor.array_read(array=mem_array, i=j)
C
chengduoZH 已提交
67 68
                result2 = layers.sums(input=[d2, prev2])

69
                j = paddle.increment(x=j)
70
                paddle.tensor.array_write(result2, i=j, array=mem_array)
L
LiYuRio 已提交
71
                paddle.assign(paddle.less_than(x=j, y=array_len2), cond2)
72
        sum_result = paddle.tensor.array_read(array=mem_array, i=j)
73
        loss = paddle.mean(sum_result)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        return loss, sum_result

    def test_simple_net(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            loss, sum_result = self.simple_net()

            append_backward(loss)

            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []

            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))

91 92 93 94
            outs = exe.run(
                feed={'d0': d[0], 'd1': d[1], 'd2': d[2]},
                fetch_list=[sum_result],
            )
95
            self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01)
Y
Yang Yang(Tony) 已提交
96

97 98 99 100 101 102
    def test_simple_net_forward(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            self.simple_net()
            binary = fluid.compiler.CompiledProgram(main_program)
Y
Yang Yang(Tony) 已提交
103

104 105 106
            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []
Y
Yang Yang(Tony) 已提交
107

108 109
            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))
Y
Yang Yang(Tony) 已提交
110

111 112
            for _ in range(2):
                exe.run(binary, feed={'d0': d[0], 'd1': d[1], 'd2': d[2]})
Y
Yang Yang(Tony) 已提交
113

114 115 116
    def test_exceptions(self):
        i = layers.zeros(shape=[2], dtype='int64')
        array_len = layers.fill_constant(shape=[2], dtype='int64', value=1)
L
LiYuRio 已提交
117
        cond = paddle.less_than(x=i, y=array_len)
118
        with self.assertRaises(TypeError):
119
            paddle.static.nn.control_flow.While(cond=cond)
120 121
        cond = layers.cast(cond, dtype='float64')
        with self.assertRaises(TypeError):
122
            paddle.static.nn.control_flow.While(cond=cond)
123

Y
Yang Yang(Tony) 已提交
124

125 126 127 128 129 130
class BadInputTest(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
                x = [1, 2, 3]
131
                paddle.increment(x)
132 133 134 135

            self.assertRaises(TypeError, test_bad_x)


136 137 138 139 140 141 142 143 144 145 146 147
class TestIgnoreVarNameInWhile(unittest.TestCase):
    def test_ignore_var(self):
        def cond(i, ten, temp, y):
            return i < ten

        def body_func(i, ten, batch_info, origin_seq):
            print(batch_info)
            batch_info = fluid.contrib.layers.shuffle_batch(batch_info)
            print(batch_info)
            i = i + 1
            return [i, ten, batch_info, origin_seq]

G
GGBond8488 已提交
148 149 150 151
        x = paddle.static.data(name='x', shape=[-1, 1, 4], dtype='float32')
        y = paddle.static.data(name='y', shape=[-1, 1, 1], dtype='float32')
        x.desc.set_need_check_feed(False)
        y.desc.set_need_check_feed(False)
152 153 154 155
        temp = layers.concat(input=[x, y], axis=-1)
        i = layers.fill_constant(shape=[1], value=0, dtype='int32')
        num = layers.fill_constant(shape=[1], value=5, dtype='int32')

156
        i, ten, shuffle_temp, y = paddle.static.nn.while_loop(
157 158
            cond, body_func, [i, num, temp, y]
        )
159 160 161 162 163 164 165 166 167 168 169

        output = shuffle_temp

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        input_x = numpy.array([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10]])
        input_x = input_x.reshape(3, 1, 4)
        input_y = numpy.array([[10], [12], [33]])
        input_y = input_y.reshape(3, 1, 1)

170 171 172 173 174
        (res,) = exe.run(
            fluid.default_main_program(),
            feed={'x': input_x, 'y': input_y},
            fetch_list=[output],
        )
175 176 177 178

        self.assertListEqual(list(res.shape), [3, 1, 5])


179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
class TestOutputsMustExistsInputs(unittest.TestCase):
    def test_outputs_exists_inputs(self):
        """
        We guarantee that the output tensor must be in the input tensor, so that the output and input can correspond to each other, but the input can be greater than the number of outputs. It's required in paddle2onnx.
        """
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):

            def func(x):
                s = paddle.zeros([1])
                i = paddle.ones([1])
                max_len = paddle.shape(x)[0]

                def cond(i, s, x):
                    return i < max_len

                def body(i, s, x):
                    iter = x[i]
                    s += iter
                    i += 1
                    return i, s, x

                [i, s, x] = paddle.static.nn.while_loop(cond, body, [i, s, x])
                return s

            paddle.enable_static()
G
GGBond8488 已提交
206
            x = paddle.static.data(shape=[-1], name='x', dtype='float32')
207 208 209 210
            func(x)
        for op in main_program.block(0).ops:
            if op.type == "while":
                for out_name in op.output("Out"):
211 212
                    if out_name in op.input("Condition"):
                        continue
213 214
                    self.assertTrue(
                        out_name in op.input("X"),
215 216 217 218
                        "In while op, the variable in output(`Out`) must exists in inputs(`X`), but the variable with name `{}` not meet the precondition.".format(
                            out_name
                        ),
                    )
219 220


Y
Yang Yang(Tony) 已提交
221 222
if __name__ == '__main__':
    unittest.main()