test_pixel_shuffle_op.py 10.1 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
R
ruri 已提交
16

17
import numpy as np
18
from eager_op_test import OpTest
19

R
ruri 已提交
20
import paddle
21
import paddle.nn.functional as F
22 23
from paddle import fluid
from paddle.fluid import core
R
ruri 已提交
24 25


R
ruri 已提交
26 27 28
def pixel_shuffle_np(x, up_factor, data_format="NCHW"):
    if data_format == "NCHW":
        n, c, h, w = x.shape
29 30 31 32 33 34 35 36
        new_shape = (
            n,
            c // (up_factor * up_factor),
            up_factor,
            up_factor,
            h,
            w,
        )
R
ruri 已提交
37 38 39 40 41 42
        # reshape to (num,output_channel,upscale_factor,upscale_factor,h,w)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,output_channel,h,upscale_factor,w,upscale_factor)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, c // (up_factor * up_factor), h * up_factor, w * up_factor]
        npresult = np.reshape(npresult, oshape)
R
ruri 已提交
43 44 45
        return npresult
    else:
        n, h, w, c = x.shape
46 47 48 49 50 51 52 53
        new_shape = (
            n,
            h,
            w,
            c // (up_factor * up_factor),
            up_factor,
            up_factor,
        )
R
ruri 已提交
54 55 56 57 58 59 60 61 62 63 64 65
        # reshape to (num,h,w,output_channel,upscale_factor,upscale_factor)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,h,upscale_factor,w,upscale_factor,output_channel)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, h * up_factor, w * up_factor, c // (up_factor * up_factor)]
        npresult = np.reshape(npresult, oshape)
        return npresult


class TestPixelShuffleOp(OpTest):
    def setUp(self):
        self.op_type = "pixel_shuffle"
H
hong 已提交
66
        self.python_api = paddle.nn.functional.pixel_shuffle
R
ruri 已提交
67 68 69 70 71 72 73 74 75 76 77 78
        self.init_data_format()
        n, c, h, w = 2, 9, 4, 4

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        up_factor = 3

        x = np.random.random(shape).astype("float64")
        npresult = pixel_shuffle_np(x, up_factor, self.format)
R
ruri 已提交
79 80 81

        self.inputs = {'X': x}
        self.outputs = {'Out': npresult}
R
ruri 已提交
82 83 84 85
        self.attrs = {'upscale_factor': up_factor, "data_format": self.format}

    def init_data_format(self):
        self.format = "NCHW"
R
ruri 已提交
86 87

    def test_check_output(self):
88
        self.check_output()
R
ruri 已提交
89 90

    def test_check_grad(self):
91 92 93 94
        self.check_grad(
            ['X'],
            'Out',
        )
R
ruri 已提交
95 96


R
ruri 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
class TestChannelLast(TestPixelShuffleOp):
    def init_data_format(self):
        self.format = "NHWC"


class TestPixelShuffleAPI(unittest.TestCase):
    def setUp(self):
        self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float64")
        self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float64")
        self.out_1_np = pixel_shuffle_np(self.x_1_np, 3)
        self.out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
110 111 112
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
113 114 115
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
116
            x_1 = paddle.static.data(
117 118
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
119
            x_2 = paddle.static.data(
120 121
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
R
ruri 已提交
122 123 124 125
            out_1 = F.pixel_shuffle(x_1, 3)
            out_2 = F.pixel_shuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
126 127 128 129 130 131 132 133 134 135 136 137 138
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
R
ruri 已提交
139 140 141 142

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

B
Bjmw3 已提交
143 144 145 146 147 148 149 150 151
    def test_api_fp16(self):
        paddle.enable_static()
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            if core.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
                self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float16")
                self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float16")
152
                x_1 = paddle.static.data(
B
Bjmw3 已提交
153 154
                    name="x", shape=[2, 9, 4, 4], dtype="float16"
                )
155
                x_2 = paddle.static.data(
B
Bjmw3 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
                    name="x2", shape=[2, 4, 4, 9], dtype="float16"
                )
                # init instance
                ps_1 = paddle.nn.PixelShuffle(3)
                ps_2 = paddle.nn.PixelShuffle(3, "NHWC")
                out_1 = ps_1(x_1)
                out_2 = ps_2(x_2)
                out_1_np = pixel_shuffle_np(self.x_1_np, 3)
                out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")
                exe = paddle.static.Executor(place=place)
                res_1 = exe.run(
                    fluid.default_main_program(),
                    feed={"x": self.x_1_np},
                    fetch_list=out_1,
                    use_prune=True,
                )
                res_2 = exe.run(
                    fluid.default_main_program(),
                    feed={"x2": self.x_2_np},
                    fetch_list=out_2,
                    use_prune=True,
                )
                assert np.allclose(res_1, out_1_np)
                assert np.allclose(res_2, out_2_np)

R
ruri 已提交
181 182
    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
183 184 185
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
186 187 188
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
189
            x_1 = paddle.static.data(
190 191
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
192
            x_2 = paddle.static.data(
193 194
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
R
ruri 已提交
195 196 197 198 199 200 201 202 203
            # init instance
            ps_1 = paddle.nn.PixelShuffle(3)
            ps_2 = paddle.nn.PixelShuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = pixel_shuffle_np(self.x_1_np, 3)
            out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
204 205 206 207 208 209 210 211 212 213 214 215 216
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
R
ruri 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, up_factor, data_format):

        n, c, h, w = 2, 9, 4, 4

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = pixel_shuffle_np(x, up_factor, data_format)

234 235 236
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
237 238 239 240
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

241 242 243
            pixel_shuffle = paddle.nn.PixelShuffle(
                up_factor, data_format=data_format
            )
R
ruri 已提交
244 245
            result = pixel_shuffle(paddle.to_tensor(x))

246
            np.testing.assert_allclose(result.numpy(), npresult, rtol=1e-05)
R
ruri 已提交
247

248 249 250 251 252 253
            result_functional = F.pixel_shuffle(
                paddle.to_tensor(x), 3, data_format
            )
            np.testing.assert_allclose(
                result_functional.numpy(), npresult, rtol=1e-05
            )
R
ruri 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

    def test_dygraph1(self):
        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        self.run_dygraph(3, "NHWC")


class TestPixelShuffleError(unittest.TestCase):
    def test_error_functional(self):
        def error_upscale_factor():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_upscale_factor)

271 272 273 274 275 276 277
        def error_0_upscale_factor():
            with paddle.fluid.dygraph.guard():
                x = paddle.uniform([1, 1, 1, 1], dtype='float64')
                pixel_shuffle = F.pixel_shuffle(x, 0)

        self.assertRaises(ValueError, error_0_upscale_factor)

R
ruri 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3, "WOW")

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        def error_upscale_factor_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3.33)

        self.assertRaises(TypeError, error_upscale_factor_layer)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


R
ruri 已提交
301
if __name__ == '__main__':
H
hong 已提交
302
    paddle.enable_static()
R
ruri 已提交
303
    unittest.main()