“bfdb7b7781b8beccb6f0f7cb4e00991097f9fcca”上不存在“configs/rec/multi_languages/rec_french_lite_train.yml”
test_pixel_shuffle_op.py 10.1 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
R
ruri 已提交
16

17
import numpy as np
18
from eager_op_test import OpTest
19

R
ruri 已提交
20 21
import paddle
import paddle.fluid as fluid
22 23
import paddle.fluid.core as core
import paddle.nn.functional as F
R
ruri 已提交
24 25


R
ruri 已提交
26 27 28
def pixel_shuffle_np(x, up_factor, data_format="NCHW"):
    if data_format == "NCHW":
        n, c, h, w = x.shape
29 30 31 32 33 34 35 36
        new_shape = (
            n,
            c // (up_factor * up_factor),
            up_factor,
            up_factor,
            h,
            w,
        )
R
ruri 已提交
37 38 39 40 41 42
        # reshape to (num,output_channel,upscale_factor,upscale_factor,h,w)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,output_channel,h,upscale_factor,w,upscale_factor)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, c // (up_factor * up_factor), h * up_factor, w * up_factor]
        npresult = np.reshape(npresult, oshape)
R
ruri 已提交
43 44 45
        return npresult
    else:
        n, h, w, c = x.shape
46 47 48 49 50 51 52 53
        new_shape = (
            n,
            h,
            w,
            c // (up_factor * up_factor),
            up_factor,
            up_factor,
        )
R
ruri 已提交
54 55 56 57 58 59 60 61 62 63 64 65
        # reshape to (num,h,w,output_channel,upscale_factor,upscale_factor)
        npresult = np.reshape(x, new_shape)
        # transpose to (num,h,upscale_factor,w,upscale_factor,output_channel)
        npresult = npresult.transpose(0, 1, 4, 2, 5, 3)
        oshape = [n, h * up_factor, w * up_factor, c // (up_factor * up_factor)]
        npresult = np.reshape(npresult, oshape)
        return npresult


class TestPixelShuffleOp(OpTest):
    def setUp(self):
        self.op_type = "pixel_shuffle"
H
hong 已提交
66
        self.python_api = paddle.nn.functional.pixel_shuffle
R
ruri 已提交
67 68 69 70 71 72 73 74 75 76 77 78
        self.init_data_format()
        n, c, h, w = 2, 9, 4, 4

        if self.format == "NCHW":
            shape = [n, c, h, w]
        if self.format == "NHWC":
            shape = [n, h, w, c]

        up_factor = 3

        x = np.random.random(shape).astype("float64")
        npresult = pixel_shuffle_np(x, up_factor, self.format)
R
ruri 已提交
79 80 81

        self.inputs = {'X': x}
        self.outputs = {'Out': npresult}
R
ruri 已提交
82 83 84 85
        self.attrs = {'upscale_factor': up_factor, "data_format": self.format}

    def init_data_format(self):
        self.format = "NCHW"
R
ruri 已提交
86 87

    def test_check_output(self):
88
        self.check_output()
R
ruri 已提交
89 90

    def test_check_grad(self):
91 92 93 94
        self.check_grad(
            ['X'],
            'Out',
        )
R
ruri 已提交
95 96


R
ruri 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
class TestChannelLast(TestPixelShuffleOp):
    def init_data_format(self):
        self.format = "NHWC"


class TestPixelShuffleAPI(unittest.TestCase):
    def setUp(self):
        self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float64")
        self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float64")
        self.out_1_np = pixel_shuffle_np(self.x_1_np, 3)
        self.out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

    def test_static_graph_functional(self):
110 111 112
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
113 114 115
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
116 117 118 119 120 121
            x_1 = paddle.fluid.data(
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
            x_2 = paddle.fluid.data(
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
R
ruri 已提交
122 123 124 125
            out_1 = F.pixel_shuffle(x_1, 3)
            out_2 = F.pixel_shuffle(x_2, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
126 127 128 129 130 131 132 133 134 135 136 137 138
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
R
ruri 已提交
139 140 141 142

            assert np.allclose(res_1, self.out_1_np)
            assert np.allclose(res_2, self.out_2_np)

B
Bjmw3 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    def test_api_fp16(self):
        paddle.enable_static()
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            if core.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
                self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float16")
                self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float16")
                x_1 = paddle.fluid.data(
                    name="x", shape=[2, 9, 4, 4], dtype="float16"
                )
                x_2 = paddle.fluid.data(
                    name="x2", shape=[2, 4, 4, 9], dtype="float16"
                )
                # init instance
                ps_1 = paddle.nn.PixelShuffle(3)
                ps_2 = paddle.nn.PixelShuffle(3, "NHWC")
                out_1 = ps_1(x_1)
                out_2 = ps_2(x_2)
                out_1_np = pixel_shuffle_np(self.x_1_np, 3)
                out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")
                exe = paddle.static.Executor(place=place)
                res_1 = exe.run(
                    fluid.default_main_program(),
                    feed={"x": self.x_1_np},
                    fetch_list=out_1,
                    use_prune=True,
                )
                res_2 = exe.run(
                    fluid.default_main_program(),
                    feed={"x2": self.x_2_np},
                    fetch_list=out_2,
                    use_prune=True,
                )
                assert np.allclose(res_1, out_1_np)
                assert np.allclose(res_2, out_2_np)

R
ruri 已提交
181 182
    # same test between layer and functional in this op.
    def test_static_graph_layer(self):
183 184 185
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
186 187 188
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
189 190 191 192 193 194
            x_1 = paddle.fluid.data(
                name="x", shape=[2, 9, 4, 4], dtype="float64"
            )
            x_2 = paddle.fluid.data(
                name="x2", shape=[2, 4, 4, 9], dtype="float64"
            )
R
ruri 已提交
195 196 197 198 199 200 201 202 203
            # init instance
            ps_1 = paddle.nn.PixelShuffle(3)
            ps_2 = paddle.nn.PixelShuffle(3, "NHWC")
            out_1 = ps_1(x_1)
            out_2 = ps_2(x_2)
            out_1_np = pixel_shuffle_np(self.x_1_np, 3)
            out_2_np = pixel_shuffle_np(self.x_2_np, 3, "NHWC")

            exe = paddle.static.Executor(place=place)
204 205 206 207 208 209 210 211 212 213 214 215 216
            res_1 = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_1_np},
                fetch_list=out_1,
                use_prune=True,
            )

            res_2 = exe.run(
                fluid.default_main_program(),
                feed={"x2": self.x_2_np},
                fetch_list=out_2,
                use_prune=True,
            )
R
ruri 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

            assert np.allclose(res_1, out_1_np)
            assert np.allclose(res_2, out_2_np)

    def run_dygraph(self, up_factor, data_format):

        n, c, h, w = 2, 9, 4, 4

        if data_format == "NCHW":
            shape = [n, c, h, w]
        if data_format == "NHWC":
            shape = [n, h, w, c]

        x = np.random.random(shape).astype("float64")

        npresult = pixel_shuffle_np(x, up_factor, data_format)

234 235 236
        for use_cuda in (
            [False, True] if core.is_compiled_with_cuda() else [False]
        ):
R
ruri 已提交
237 238 239 240
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.disable_static(place=place)

241 242 243
            pixel_shuffle = paddle.nn.PixelShuffle(
                up_factor, data_format=data_format
            )
R
ruri 已提交
244 245
            result = pixel_shuffle(paddle.to_tensor(x))

246
            np.testing.assert_allclose(result.numpy(), npresult, rtol=1e-05)
R
ruri 已提交
247

248 249 250 251 252 253
            result_functional = F.pixel_shuffle(
                paddle.to_tensor(x), 3, data_format
            )
            np.testing.assert_allclose(
                result_functional.numpy(), npresult, rtol=1e-05
            )
R
ruri 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

    def test_dygraph1(self):
        self.run_dygraph(3, "NCHW")

    def test_dygraph2(self):
        self.run_dygraph(3, "NHWC")


class TestPixelShuffleError(unittest.TestCase):
    def test_error_functional(self):
        def error_upscale_factor():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3.33)

        self.assertRaises(TypeError, error_upscale_factor)

271 272 273 274 275 276 277
        def error_0_upscale_factor():
            with paddle.fluid.dygraph.guard():
                x = paddle.uniform([1, 1, 1, 1], dtype='float64')
                pixel_shuffle = F.pixel_shuffle(x, 0)

        self.assertRaises(ValueError, error_0_upscale_factor)

R
ruri 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        def error_data_format():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                pixel_shuffle = F.pixel_shuffle(paddle.to_tensor(x), 3, "WOW")

        self.assertRaises(ValueError, error_data_format)

    def test_error_layer(self):
        def error_upscale_factor_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3.33)

        self.assertRaises(TypeError, error_upscale_factor_layer)

        def error_data_format_layer():
            with paddle.fluid.dygraph.guard():
                x = np.random.random([2, 9, 4, 4]).astype("float64")
                ps = paddle.nn.PixelShuffle(3, "MEOW")

        self.assertRaises(ValueError, error_data_format_layer)


R
ruri 已提交
301
if __name__ == '__main__':
H
hong 已提交
302
    paddle.enable_static()
R
ruri 已提交
303
    unittest.main()