test_maxout_op.py 5.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaox 已提交
15
import unittest
16

W
wanghaox 已提交
17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest
19

20 21
import paddle
import paddle.nn.functional as F
22
from paddle.fluid import core
W
wanghaox 已提交
23

24 25
paddle.enable_static()
np.random.seed(1)
W
wanghaox 已提交
26

27 28 29 30

def maxout_forward_naive(x, groups, channel_axis):
    s0, s1, s2, s3 = x.shape
    if channel_axis == 1:
31 32 33 34 35 36
        return np.ndarray(
            [s0, s1 // groups, groups, s2, s3], buffer=x, dtype=x.dtype
        ).max(axis=2)
    return np.ndarray(
        [s0, s1, s2, s3 // groups, groups], buffer=x, dtype=x.dtype
    ).max(axis=4)
W
wanghaox 已提交
37 38 39 40 41


class TestMaxOutOp(OpTest):
    def setUp(self):
        self.op_type = "maxout"
42
        self.python_api = paddle.nn.functional.maxout
43 44 45 46 47 48 49 50
        self.dtype = 'float64'
        self.shape = [3, 6, 2, 4]
        self.groups = 2
        self.axis = 1
        self.set_attrs()

        x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out = maxout_forward_naive(x, self.groups, self.axis)
W
wanghaox 已提交
51

52
        self.inputs = {'X': x}
53
        self.attrs = {'groups': self.groups, 'axis': self.axis}
54
        self.outputs = {'Out': out}
W
wanghaox 已提交
55

56 57
    def set_attrs(self):
        pass
W
wanghaox 已提交
58 59

    def test_check_output(self):
W
wanghuancoder 已提交
60
        self.check_output()
W
wanghaox 已提交
61 62

    def test_check_grad(self):
W
wanghuancoder 已提交
63
        self.check_grad(['X'], 'Out')
W
wanghaox 已提交
64

65

66 67 68
class TestMaxOutOpAxis0(TestMaxOutOp):
    def set_attrs(self):
        self.axis = -1
69 70


71 72 73
class TestMaxOutOpAxis1(TestMaxOutOp):
    def set_attrs(self):
        self.axis = 3
74 75


76 77 78
class TestMaxOutOpFP32(TestMaxOutOp):
    def set_attrs(self):
        self.dtype = 'float32'
79 80


81 82 83
class TestMaxOutOpGroups(TestMaxOutOp):
    def set_attrs(self):
        self.groups = 3
84

W
wanghaox 已提交
85

86 87 88 89 90 91
class TestMaxoutAPI(unittest.TestCase):
    # test paddle.nn.Maxout, paddle.nn.functional.maxout
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [2, 6, 5, 4]).astype(np.float64)
        self.groups = 2
        self.axis = 1
92 93 94
        self.place = (
            paddle.CUDAPlace(0)
            if core.is_compiled_with_cuda()
95
            else paddle.CPUPlace()
96
        )
97 98 99

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
100
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
101 102 103 104 105 106 107
            out1 = F.maxout(x, self.groups, self.axis)
            m = paddle.nn.Maxout(self.groups, self.axis)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        for r in res:
108
            np.testing.assert_allclose(out_ref, r, rtol=1e-05)
109

110
    def test_dygraph_api(self):
111 112 113 114 115 116 117
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.maxout(x, self.groups, self.axis)
        m = paddle.nn.Maxout(self.groups, self.axis)
        out2 = m(x)
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        for r in [out1, out2]:
118
            np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05)
119 120 121

        out3 = F.maxout(x, self.groups, -1)
        out3_ref = maxout_forward_naive(self.x_np, self.groups, -1)
122
        np.testing.assert_allclose(out3_ref, out3.numpy(), rtol=1e-05)
123 124
        paddle.enable_static()

125
    def test_errors(self):
126
        with paddle.static.program_guard(paddle.static.Program()):
127
            # The input type must be Variable.
128
            self.assertRaises(TypeError, F.maxout, 1)
129
            # The input dtype must be float16, float32, float64.
130
            x_int32 = paddle.static.data(
131 132
                name='x_int32', shape=[2, 4, 6, 8], dtype='int32'
            )
133 134
            self.assertRaises(TypeError, F.maxout, x_int32)

135
            x_float32 = paddle.static.data(name='x_float32', shape=[2, 4, 6, 8])
136
            self.assertRaises(ValueError, F.maxout, x_float32, 2, 2)
137 138


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
class TestMaxOutOpFP16(TestMaxOutOp):
    def set_attrs(self):
        self.dtype = 'float16'


class TestMaxoutFP16Case1(TestMaxOutOpFP16):
    def set_attrs(self):
        self.axis = -1


class TestMaxoutFP16Case2(TestMaxOutOpFP16):
    def set_attrs(self):
        self.axis = 3


@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
class TestMaxoutStaticAPIFP16(unittest.TestCase):
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [2, 6, 5, 4]).astype(np.float16)
        self.groups = 2
        self.axis = 1
        self.place = paddle.CUDAPlace(0)

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
            out = F.maxout(x, self.groups, self.axis)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        np.testing.assert_allclose(out_ref, res[0], rtol=1e-05)


W
wanghaox 已提交
174 175
if __name__ == '__main__':
    unittest.main()