test_maxout_op.py 4.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaox 已提交
15
import unittest
16

W
wanghaox 已提交
17
import numpy as np
18 19
from op_test import OpTest

20
import paddle
21
import paddle.fluid.core as core
22
import paddle.nn.functional as F
W
wanghaox 已提交
23

24 25
paddle.enable_static()
np.random.seed(1)
W
wanghaox 已提交
26

27 28 29 30

def maxout_forward_naive(x, groups, channel_axis):
    s0, s1, s2, s3 = x.shape
    if channel_axis == 1:
31 32 33 34 35 36
        return np.ndarray(
            [s0, s1 // groups, groups, s2, s3], buffer=x, dtype=x.dtype
        ).max(axis=2)
    return np.ndarray(
        [s0, s1, s2, s3 // groups, groups], buffer=x, dtype=x.dtype
    ).max(axis=4)
W
wanghaox 已提交
37 38 39 40 41


class TestMaxOutOp(OpTest):
    def setUp(self):
        self.op_type = "maxout"
42
        self.python_api = paddle.nn.functional.maxout
43 44 45 46 47 48 49 50
        self.dtype = 'float64'
        self.shape = [3, 6, 2, 4]
        self.groups = 2
        self.axis = 1
        self.set_attrs()

        x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out = maxout_forward_naive(x, self.groups, self.axis)
W
wanghaox 已提交
51

52
        self.inputs = {'X': x}
53
        self.attrs = {'groups': self.groups, 'axis': self.axis}
54
        self.outputs = {'Out': out}
W
wanghaox 已提交
55

56 57
    def set_attrs(self):
        pass
W
wanghaox 已提交
58 59

    def test_check_output(self):
60
        self.check_output(check_eager=True)
W
wanghaox 已提交
61 62

    def test_check_grad(self):
63
        self.check_grad(['X'], 'Out', check_eager=True)
W
wanghaox 已提交
64

65

66 67 68
class TestMaxOutOpAxis0(TestMaxOutOp):
    def set_attrs(self):
        self.axis = -1
69 70


71 72 73
class TestMaxOutOpAxis1(TestMaxOutOp):
    def set_attrs(self):
        self.axis = 3
74 75


76 77 78
class TestMaxOutOpFP32(TestMaxOutOp):
    def set_attrs(self):
        self.dtype = 'float32'
79 80


81 82 83
class TestMaxOutOpGroups(TestMaxOutOp):
    def set_attrs(self):
        self.groups = 3
84

W
wanghaox 已提交
85

86 87 88 89 90 91
class TestMaxoutAPI(unittest.TestCase):
    # test paddle.nn.Maxout, paddle.nn.functional.maxout
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [2, 6, 5, 4]).astype(np.float64)
        self.groups = 2
        self.axis = 1
92 93 94
        self.place = (
            paddle.CUDAPlace(0)
            if core.is_compiled_with_cuda()
95
            else paddle.CPUPlace()
96
        )
97 98 99

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
100
            x = paddle.static.data('X', self.x_np.shape, self.x_np.dtype)
101 102 103 104 105 106 107
            out1 = F.maxout(x, self.groups, self.axis)
            m = paddle.nn.Maxout(self.groups, self.axis)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        for r in res:
108
            np.testing.assert_allclose(out_ref, r, rtol=1e-05)
109

110
    def test_dygraph_api(self):
111 112 113 114 115 116 117
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.maxout(x, self.groups, self.axis)
        m = paddle.nn.Maxout(self.groups, self.axis)
        out2 = m(x)
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        for r in [out1, out2]:
118
            np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05)
119 120 121

        out3 = F.maxout(x, self.groups, -1)
        out3_ref = maxout_forward_naive(self.x_np, self.groups, -1)
122
        np.testing.assert_allclose(out3_ref, out3.numpy(), rtol=1e-05)
123 124
        paddle.enable_static()

125
    def test_errors(self):
126
        with paddle.static.program_guard(paddle.static.Program()):
127
            # The input type must be Variable.
128
            self.assertRaises(TypeError, F.maxout, 1)
129
            # The input dtype must be float16, float32, float64.
130
            x_int32 = paddle.static.data(
131 132
                name='x_int32', shape=[2, 4, 6, 8], dtype='int32'
            )
133 134
            self.assertRaises(TypeError, F.maxout, x_int32)

135
            x_float32 = paddle.static.data(name='x_float32', shape=[2, 4, 6, 8])
136
            self.assertRaises(ValueError, F.maxout, x_float32, 2, 2)
137 138


W
wanghaox 已提交
139 140
if __name__ == '__main__':
    unittest.main()