framework.py 177.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
    'device_guard',
G
guofei 已提交
55 56
    'set_flags',
    'get_flags',
57
]
Y
Yu Yang 已提交
58

Q
qiaolongfei 已提交
59 60 61 62
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
63 64
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
65 66
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
67
_current_device = None
68 69


70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
177
def in_dygraph_mode():
L
lujun 已提交
178
    """
Y
Youwei Song 已提交
179
    This function checks whether the program runs in dynamic graph mode or not.
180 181 182
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
183 184

    Returns:
Y
Youwei Song 已提交
185
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
186 187 188 189

    Examples:
        .. code-block:: python

190
            import paddle.fluid as fluid
L
lujun 已提交
191

192 193 194 195
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
196
    """
L
lujun 已提交
197
    return _dygraph_tracer_ is not None
198 199


200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
222 223
def _dygraph_tracer():
    return _dygraph_tracer_
224

W
Wu Yi 已提交
225

M
minqiyang 已提交
226
def _current_expected_place():
L
lujun 已提交
227
    return _dygraph_current_expected_place_
M
minqiyang 已提交
228 229


L
Leo Chen 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
247
def _cpu_num():
248
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
249 250 251 252 253 254 255 256
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
257
        os.environ['CPU_NUM'] = str(1)
258
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
259 260 261 262 263 264 265 266 267 268
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
269 270


C
chengduo 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
286
def cuda_places(device_ids=None):
L
lujun 已提交
287
    """
288 289 290 291 292
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
293 294

    If :code:`device_ids` is None, environment variable of
295
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
296 297 298
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
299
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
300 301

    If :code:`device_ids` is not None, it should be the device
302
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
303 304 305
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
306 307
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
308 309

    Returns:
310
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
311 312 313 314

    Examples:
        .. code-block:: python

315
            import paddle.fluid as fluid
L
lujun 已提交
316 317 318
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
319 320 321
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
322
        device_ids = _cuda_ids()
S
sneaxiy 已提交
323 324 325 326 327 328
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
329
    """
330
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
331 332 333
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
334 335
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
336 337
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
338

339 340
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
341 342

    Returns:
343
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
344 345 346 347

    Examples:
        .. code-block:: python

348
            import paddle.fluid as fluid
L
lujun 已提交
349 350 351
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
352 353 354 355 356 357
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
358
    """
359
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
360 361 362

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
363 364 365 366
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
367

368 369
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
370 371

    Returns:
372
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
373 374 375 376

    Examples:
        .. code-block:: python

377
            import paddle.fluid as fluid
L
lujun 已提交
378 379 380 381 382
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
383 384 385
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
386 387
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
388 389


390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
416
@signature_safe_contextmanager
417 418 419 420
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
421 422 423
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
424 425

    Args:
T
Tao Luo 已提交
426
        prefix(str, optional): prefix. Default is none.
427 428 429

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
430

431
          import paddle.fluid as fluid
432
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
433 434 435 436 437 438
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
439
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
440
                f = fluid.layers.pow(d, 2.0)
441
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
461 462
    """
    # TODO(panyx0718): Only [0-9a-z].
463
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
464 465 466
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
467
        assert prefix, "namescope prefix can not be empty."
468 469 470 471
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
472 473 474 475 476 477 478 479 480 481 482 483


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
484 485 486
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
487 488 489 490


def grad_var_name(var_name):
    """
491 492
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
493 494 495
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
496

497
def convert_np_dtype_to_dtype_(np_dtype):
498 499
    """
    Convert the data type in numpy to the data type in Paddle
500

501
    Args:
502
        np_dtype(np.dtype): the data type in numpy.
503

504 505
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
506 507

    """
508 509
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
510
        return core.VarDesc.VarType.FP32
511
    elif dtype == np.float64:
512
        return core.VarDesc.VarType.FP64
513
    elif dtype == np.float16:
514
        return core.VarDesc.VarType.FP16
515
    elif dtype == np.int32:
516
        return core.VarDesc.VarType.INT32
517
    elif dtype == np.int16:
518
        return core.VarDesc.VarType.INT16
519
    elif dtype == np.int64:
520
        return core.VarDesc.VarType.INT64
521
    elif dtype == np.bool:
522
        return core.VarDesc.VarType.BOOL
523 524
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
525 526
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
527 528
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
529
    else:
M
minqiyang 已提交
530
        raise ValueError("Not supported numpy dtype %s" % dtype)
531 532 533


def dtype_is_floating(dtype):
534 535 536
    """
    Check the data type is floating or not.
    Args:
537
        dtype(np.dtype|core.VarDesc.VarType): data type.
538 539 540 541 542
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
543
    if not isinstance(dtype, core.VarDesc.VarType):
544 545
        dtype = convert_np_dtype_to_dtype_(dtype)

546 547 548 549
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
550 551


Y
Yang Yang(Tony) 已提交
552
def _debug_string_(proto, throw_on_error=True):
553 554 555 556 557 558 559 560 561 562 563
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
564
    error_fields = list()
Y
Yang Yang(Tony) 已提交
565
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
566 567
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
568 569 570
    return proto.__str__()


571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():

            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
                temp_end = var.block.create_var(dtype='int32')
                var.block.append_op(
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
724

725
    # starts
L
Leo Chen 已提交
726
    if contain_var(slice_start):
727 728 729 730 731 732 733 734
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
735 736 737 738
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
739 740 741 742 743 744 745
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
746 747 748
    else:
        attrs['ends'] = slice_end

749 750
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
751
        if contain_var(slice_step):
752 753 754 755 756 757 758
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
759 760
        else:
            attrs['strides'] = slice_step
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
        slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

        var.block.append_op(
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
        strided_slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
        var.block.append_op(
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
        reverse_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
        var.block.append_op(
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
808
class Variable(object):
809
    """
J
Jiabin Yang 已提交
810
    **Notes**:
811
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
812

813 814
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
815 816 817
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
818
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
819 820
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
821

822
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
823
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
824

T
tianshuo78520a 已提交
825
    Most of a Variable's member variables can be set to be None. It mean
826
    it is not available or will be specified later.
827

828
    Examples:
829 830
        In Static Graph Mode:

831 832
        .. code-block:: python

833
            import paddle.fluid as fluid
834
            cur_program = fluid.Program()
835 836 837 838
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
839
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
840 841 842 843 844 845 846 847 848

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

849 850
    """

Y
Yu Yang 已提交
851 852
    def __init__(self,
                 block,
Y
Yu Yang 已提交
853
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
854 855 856 857
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
858
                 capacity=None,
Q
QI JUN 已提交
859
                 persistable=None,
F
fengjiayi 已提交
860
                 error_clip=None,
Y
Yu Yang 已提交
861
                 stop_gradient=False,
F
fengjiayi 已提交
862
                 is_data=False,
H
Huihuang Zheng 已提交
863
                 need_check_feed=False,
H
hong 已提交
864
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
865
                 **kwargs):
Y
Yu Yang 已提交
866 867
        self.block = block
        if name is None:
Y
Yu Yang 已提交
868
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
869

Y
Yu Yang 已提交
870
        if dtype is not None:
871
            if not isinstance(dtype, core.VarDesc.VarType):
872
                dtype = convert_np_dtype_to_dtype_(dtype)
873

H
hong 已提交
874 875
        self.belong_to_optimizer = belong_to_optimizer

876 877 878 879 880
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
881

882 883 884
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
885

886 887 888 889 890 891 892
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
893

894
        if shape is not None:
895
            if is_new_var:
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
937

938 939
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
940

941 942 943 944 945 946 947
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
948

949 950 951 952
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
953

954
    @dygraph_only
955 956
    def detach(self):
        """
J
Jiabin Yang 已提交
957
        **Notes**:
T
tianshuo78520a 已提交
958
            **This API is ONLY available in Dygraph mode**
959

960
        Returns a new Variable, detached from the current graph.
961

962
        Returns:
J
Jiabin Yang 已提交
963
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
964

965

966 967 968 969 970
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
971
                from paddle.fluid.dygraph import Linear
972 973 974 975
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
976
                    linear = Linear(32, 64)
977
                    data = to_variable(data)
978
                    x = linear(data)
979 980 981
                    y = x.detach()

        """
982
        pass
983

984
    @dygraph_only
985
    def numpy(self):
986
        """
J
Jiabin Yang 已提交
987
        **Notes**:
T
tianshuo78520a 已提交
988
            **This API is ONLY available in Dygraph mode**
989

J
Jiabin Yang 已提交
990
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
991 992 993 994 995

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
996
            ndarray: dtype is same as current Variable
997 998 999 1000 1001 1002

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1003
                from paddle.fluid.dygraph import Linear
1004 1005 1006 1007
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1008
                    linear = Linear(32, 64)
1009
                    data = to_variable(data)
1010
                    x = linear(data)
1011 1012 1013
                    print(x.numpy())

        """
1014
        pass
1015

1016 1017 1018
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1019
        **Notes**:
T
tianshuo78520a 已提交
1020
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1032
                from paddle.fluid.dygraph import Linear
1033 1034
                import numpy as np

1035
                data = np.ones([3, 1024], dtype='float32')
1036
                with fluid.dygraph.guard():
1037
                    linear = fluid.dygraph.Linear(1024, 4)
1038
                    t = to_variable(data)
1039
                    linear(t)  # call with default weight
1040
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1041 1042
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1043 1044

        """
1045
        pass
1046

1047
    @dygraph_only
1048
    def backward(self, backward_strategy=None):
1049
        """
J
Jiabin Yang 已提交
1050
        **Notes**:
T
tianshuo78520a 已提交
1051
            **This API is ONLY available in Dygraph mode**
1052 1053 1054

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1055 1056
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1057

J
Jiabin Yang 已提交
1058 1059
        Returns:
            NoneType: None
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1072 1073
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1074 1075 1076 1077 1078 1079 1080 1081 1082
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1083
        pass
1084

1085
    @dygraph_only
1086
    def gradient(self):
1087
        """
J
Jiabin Yang 已提交
1088
        **Notes**:
T
tianshuo78520a 已提交
1089
            **This API is ONLY available in Dygraph mode**
1090 1091 1092

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1093
        Returns:
1094
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1095 1096 1097 1098 1099 1100 1101

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1102
                # example1: return ndarray
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1130
        """
1131
        pass
1132

1133
    @dygraph_only
1134
    def clear_gradient(self):
1135
        """
J
Jiabin Yang 已提交
1136
        **Notes**:
T
tianshuo78520a 已提交
1137
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1138 1139

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1140

J
Jiabin Yang 已提交
1141
        Clear  (set to ``0`` ) the Gradient of Current Variable
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1168
        pass
X
Xin Pan 已提交
1169

1170
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1171 1172
        return self.to_string(True)

F
update  
fengjiayi 已提交
1173
    def to_string(self, throw_on_error, with_details=False):
1174 1175 1176
        """
        Get debug string.

J
Jiabin Yang 已提交
1177 1178 1179 1180 1181
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1182

1183 1184
        Returns:
            str: The debug string.
1185 1186 1187 1188 1189

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1190

1191 1192 1193 1194 1195
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1196
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1197
                print("=============with detail===============")
1198
                print(new_variable.to_string(True, True))
1199
        """
L
lujun 已提交
1200
        if in_dygraph_mode():
1201
            return
1202

F
update  
fengjiayi 已提交
1203 1204
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1205
        protostr = self.desc.serialize_to_string()
1206
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1207 1208 1209 1210
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1211 1212 1213
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1214
        return res_str
1215 1216 1217

    __repr__ = __str__

1218
    @property
1219
    def stop_gradient(self):
J
Jiabin Yang 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1235 1236
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1237 1238 1239
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1240 1241
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1242 1243 1244 1245
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1246
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1247 1248
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1249
        if in_dygraph_mode():
1250
            pass
M
minqiyang 已提交
1251
        else:
1252
            return self._stop_gradient
1253

1254 1255
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1256
        if in_dygraph_mode():
1257
            pass
1258
        else:
1259
            self._stop_gradient = s
1260

1261 1262
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1284
        if in_dygraph_mode():
1285
            pass
1286 1287
        else:
            return self.desc.persistable()
1288

Y
Yu Yang 已提交
1289 1290
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1291
        if in_dygraph_mode():
1292 1293 1294
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1295 1296
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1297

Y
Yu Yang 已提交
1298 1299
    @property
    def name(self):
J
Jiabin Yang 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1316
        if in_dygraph_mode():
1317
            pass
1318 1319
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1341 1342
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1343
        if in_dygraph_mode():
1344
            pass
1345 1346
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1347

Y
Yu Yang 已提交
1348 1349
    @property
    def shape(self):
J
Jiabin Yang 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1367
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1368
        if in_dygraph_mode():
1369
            pass
1370 1371
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1372 1373

    @property
F
fengjiayi 已提交
1374
    def dtype(self):
J
Jiabin Yang 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1391
        if in_dygraph_mode():
1392
            pass
1393 1394
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1395 1396

    @property
1397
    @dygraph_not_support
Y
Yu Yang 已提交
1398
    def lod_level(self):
J
Jiabin Yang 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1420
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1421 1422
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1423 1424 1425 1426

        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1427
        return self.desc.lod_level()
Y
Yu Yang 已提交
1428

Y
Yu Yang 已提交
1429 1430
    @property
    def type(self):
J
Jiabin Yang 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1447
        if in_dygraph_mode():
1448
            pass
1449 1450
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1451

W
Wu Yi 已提交
1452
    def _set_error_clip(self, error_clip):
1453 1454 1455 1456 1457 1458 1459 1460 1461
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1462 1463
        self.error_clip = error_clip

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1504
            raise ValueError("slice step can not be zero")
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1580
    def _cloneVar(self, copy=False):
1581 1582
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1583 1584
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1585 1586 1587 1588
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1589
        new_var = self._cloneVar()
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1600
        new_var = self._cloneVar()
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1611
                return self._cloneVar(True)
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1630
                return self._cloneVar(True)
1631
            index = int(item)
1632
            if (index > 0 and index >= self.shape[axis]) \
1633 1634 1635 1636 1637 1638 1639
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1640
        return _getitem_impl_(self, item)
1641

Y
Yu Yang 已提交
1642

F
fengjiayi 已提交
1643 1644 1645
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1646

1647 1648
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1649 1650 1651 1652
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1653
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1654 1655 1656 1657 1658
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1659 1660 1661 1662
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1672
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1673 1674 1675 1676 1677 1678
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1679 1680 1681 1682 1683 1684 1685 1686
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1687 1688
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1689 1690
        return self.op_proto_map[type]

1691 1692 1693 1694 1695 1696
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1697 1698 1699 1700
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1701
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1702
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1703 1704
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1705 1706
        }

F
fengjiayi 已提交
1707

X
Xin Pan 已提交
1708
class Operator(object):
1709
    """
1710 1711 1712 1713 1714 1715 1716
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1717
        type(str): The type of operator. Default None.
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1738
        Block.append_op or Block._prepend_op instead.
1739 1740 1741 1742

    Examples:
        .. code-block:: python

1743
            import paddle.fluid as fluid
1744
            cur_program = fluid.Program()
1745 1746 1747 1748 1749
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1750
    """
1751
    OP_WITHOUT_KERNEL_SET = {
1752 1753
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1754 1755
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1756
        'c_sync_comm_stream'
1757
    }
1758

Y
Yu Yang 已提交
1759 1760
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1761
                 desc,
Y
Yu Yang 已提交
1762 1763 1764
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1765
                 attrs=None):
L
lujun 已提交
1766
        if in_dygraph_mode():
1767 1768
            if type is None:
                raise ValueError(
1769
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1770
            self._type = type
M
minqiyang 已提交
1771
            self.attrs = attrs if attrs else {}
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1786
                )] = self.block.program._op_role
1787 1788 1789

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1790 1791
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1792 1793 1794 1795 1796 1797 1798 1799

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1800
                    "`type` to initialized an Operator can not be None.")
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1850
                        for index, arg in enumerate(in_args):
1851 1852 1853 1854
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1855
                            elif isinstance(arg, Variable):
1856
                                in_arg_names.append(cpt.to_text(arg.name))
1857
                            else:
1858 1859 1860 1861
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1862 1863
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1890
                        if not in_dygraph_mode():
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1910
    def _has_kernel(self, op_type):
1911 1912
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1913
    def to_string(self, throw_on_error):
1914
        """
1915 1916
        Get debug string.

1917
        Args:
1918 1919
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1920

1921 1922
        Returns:
            str: The debug string.
1923 1924

        """
1925
        protostr = self.desc.serialize_to_string()
1926
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1927 1928 1929 1930
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1931 1932 1933

    __repr__ = __str__

F
fengjiayi 已提交
1934 1935
    @property
    def type(self):
L
lujun 已提交
1936
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1937
            return self._type
1938 1939
        else:
            return self.desc.type()
F
fengjiayi 已提交
1940 1941

    def input(self, name):
1942
        """
1943
        Get the input arguments according to the input parameter name.
1944

1945 1946
        Args:
            name(str): The input parameter name.
1947

1948 1949 1950
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1951
        """
F
fengjiayi 已提交
1952 1953
        return self.desc.input(name)

W
Wu Yi 已提交
1954
    def _rename_input(self, old_name, new_name):
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1965
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1966

W
Wu Yi 已提交
1967
    def _rename_output(self, old_name, new_name):
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1978
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1979

F
fengjiayi 已提交
1980 1981 1982 1983
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1984 1985 1986 1987 1988 1989 1990 1991
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1992
    def output(self, name):
1993
        """
1994
        Get output arguments by the output parameter name.
1995

1996 1997
        Args:
            name(str): The output parameter name.
1998

1999 2000 2001
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2002
        """
F
fengjiayi 已提交
2003 2004 2005 2006 2007 2008
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2009 2010 2011 2012 2013 2014 2015 2016
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2017
    def has_attr(self, name):
2018
        """
2019 2020
        Whether this Operator has the attribute with name or not.

2021
        Args:
2022
            name(str): the attribute name.
2023

2024 2025
        Returns:
            bool: True if has this attribute.
2026 2027

        """
F
fengjiayi 已提交
2028 2029 2030
        return self.desc.has_attr(name)

    def attr_type(self, name):
2031
        """
2032
        Get the type of attribute by attribute's name.
2033

2034 2035
        Args:
            name(str): the attribute name.
2036

2037 2038
        Returns:
            core.AttrType: the attribute type.
2039
        """
F
fengjiayi 已提交
2040 2041
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2042
    def _set_attr(self, name, val):
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2053 2054
        self._update_desc_attr(name, val)

2055 2056 2057
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2069 2070
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2071 2072
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2073
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2074 2075 2076 2077
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2078
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2079

F
fengjiayi 已提交
2080 2081 2082 2083 2084
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2085
        """
2086 2087
        Get the attribute by name.

2088
        Args:
2089
            name(str): the attribute name.
2090

2091 2092
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2093 2094
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2095
        return self.desc.attr(name)
Y
Yu Yang 已提交
2096

W
Wu Yi 已提交
2097
    def _block_attr_id(self, name):
2098
        """
G
gongweibao 已提交
2099
        Get the block attribute's id by name.
2100

2101 2102
        Args:
            name(str): the attribute name.
2103

2104 2105
        Returns:
            int: the block index.
2106
        """
W
Wu Yi 已提交
2107
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2108

W
Wu Yi 已提交
2109
    def _block_attr(self, name):
G
gongweibao 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2120
        id = self._block_attr_id(name)
G
gongweibao 已提交
2121 2122 2123
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2124
    def _blocks_attr(self, name):
G
gongweibao 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2135
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2136 2137 2138 2139 2140
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2141
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2152
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2153

J
JiayiFeng 已提交
2154
    def all_attrs(self):
F
fengjiayi 已提交
2155
        """
2156 2157 2158
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2159
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2160 2161 2162 2163
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2164 2165
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2166
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2167 2168 2169
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2170
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2171 2172 2173 2174
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2175 2176
        return attr_map

2177 2178 2179 2180 2181 2182 2183 2184 2185
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
        else:
            return False

Y
Yu Yang 已提交
2186

Y
Yu Yang 已提交
2187
class Block(object):
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2202
        use `Program._create_block()` to create a block.
2203 2204 2205 2206

    Examples:
        .. code-block:: python

2207 2208 2209
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2210 2211 2212 2213 2214 2215 2216 2217 2218
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2219
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2220
        self.desc = program.desc.block(idx)
2221
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2222
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2223
        self.program = program
2224
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2225

2226
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2227 2228
        return self.to_string(True)

F
fengjiayi 已提交
2229 2230
    def to_string(self, throw_on_error, with_details=False):
        """
2231 2232
        Get debug string.

F
fengjiayi 已提交
2233 2234
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2235
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2236
            with_details(bool): more details about variables and parameters
2237 2238
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2239

2240 2241
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2242 2243 2244 2245
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2246
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2247 2248
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2249
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2250
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2251
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2252
            for op in self.ops:
F
fengjiayi 已提交
2253 2254
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2255 2256 2257
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2258 2259
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2260 2261
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2262 2263 2264

    __repr__ = __str__

Y
Yu Yang 已提交
2265 2266
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2267
        return self.desc.parent
Y
Yu Yang 已提交
2268

Y
Yu Yang 已提交
2269 2270 2271 2272
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2273
    def _set_forward_block_idx(self, idx):
2274 2275 2276 2277 2278 2279 2280 2281 2282
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2283
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2284

2285 2286 2287 2288 2289 2290 2291 2292
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2293 2294
    @property
    def idx(self):
Y
Yu Yang 已提交
2295
        return self.desc.id
Y
Yu Yang 已提交
2296

Q
Qiao Longfei 已提交
2297
    def var(self, name):
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2311
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2312 2313 2314
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2315 2316
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2317
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2318
        return v
Q
Qiao Longfei 已提交
2319

X
Xin Pan 已提交
2320
    def _find_var_recursive(self, name):
2321 2322 2323 2324 2325 2326 2327
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2328
            Variable: the Variable with the giving name. Or None if not found.
2329
        """
Y
Yu Yang 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2354
        return None
Y
Yu Yang 已提交
2355

X
Xin Pan 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2375

Q
Qiao Longfei 已提交
2376
    def all_parameters(self):
2377
        return list(self.iter_parameters())
2378

2379
    def iter_parameters(self):
M
minqiyang 已提交
2380
        return (item[1] for item in six.iteritems(self.vars)
2381
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2382

Y
Yu Yang 已提交
2383
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2384 2385 2386
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2387 2388 2389
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2390
        return var
Y
Yu Yang 已提交
2391

Q
Qiao Longfei 已提交
2392 2393 2394
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2395
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2396 2397
        """
        Rename variable in vars and ops' inputs and outputs
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2410
        """
M
minqiyang 已提交
2411 2412
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2413

T
typhoonzero 已提交
2414
        if not self.has_var(name):
2415
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2416 2417
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2418
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2419 2420 2421 2422 2423 2424
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2425
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2426 2427 2428 2429
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2430
        orig_var_type = v.type
M
minqiyang 已提交
2431
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2432
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2433
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2434
        if var_type == "Parameter":
L
Leo Chen 已提交
2435 2436
            if in_dygraph_mode():
                var = ParamBase(
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2447 2448
                var = Parameter(
                    self,
2449 2450 2451 2452 2453 2454 2455 2456 2457
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2458
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2459 2460
            var = Variable(
                self,
T
typhoonzero 已提交
2461
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2462 2463 2464 2465
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2466
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2467 2468 2469
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2470
        self._sync_with_cpp()
2471
        return var
T
typhoonzero 已提交
2472

W
Wu Yi 已提交
2473 2474
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2475
        self.desc._remove_var(cpt.to_bytes(name))
2476 2477
        del self.vars[name]

Y
Yu Yang 已提交
2478 2479
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2480
        param = None
L
Leo Chen 已提交
2481
        if in_dygraph_mode():
2482
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2483 2484
        else:
            param = Parameter(global_block, *args, **kwargs)
2485
        if 'initializer' in kwargs:
2486 2487 2488 2489 2490

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2491 2492 2493 2494 2495
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2507
                # TODO already inited, do nothing, should log a warning
2508 2509 2510
                pass
            else:
                initializer(param, self)
2511
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2512
        return param
Y
Yu Yang 已提交
2513

Y
Yu Yang 已提交
2514
    def append_op(self, *args, **kwargs):
2515 2516 2517 2518 2519 2520
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2521
        if in_dygraph_mode():
2522 2523 2524
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2525 2526 2527 2528 2529
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2530

J
Jiabin Yang 已提交
2531 2532
            type = kwargs.get("type", None)

2533 2534 2535
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2536
                type=type,
M
minqiyang 已提交
2537 2538
                inputs=None,
                outputs=None,
2539
                attrs=attrs)
2540

M
minqiyang 已提交
2541 2542 2543
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2544
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2545 2546

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2547
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2548 2549
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2550
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2551
        else:
2552 2553 2554 2555 2556 2557 2558 2559 2560
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2561
            self.ops.append(op)
M
minqiyang 已提交
2562

2563 2564
        return op

W
Wu Yi 已提交
2565
    def _insert_op(self, index, *args, **kwargs):
2566 2567 2568 2569 2570 2571 2572 2573 2574
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2575 2576
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2577 2578 2579 2580
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2581
    def _remove_op(self, index):
2582 2583 2584 2585 2586 2587 2588 2589 2590
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2591 2592
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2593 2594
        del self.ops[index]

W
Wu Yi 已提交
2595
    def _slice_ops(self, start, end):
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2606
        return self.ops[start:end]
Y
Yancey1989 已提交
2607

W
Wu Yi 已提交
2608
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2609
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2610 2611
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2612
            op = Operator(
J
Jiabin Yang 已提交
2613
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2614

J
Jiabin Yang 已提交
2615
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2616
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2617 2618
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2619
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2620
        else:
2621 2622 2623 2624 2625 2626 2627 2628
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2629
            self.ops.insert(0, op)
2630

Y
Yu Yang 已提交
2631 2632
        return op

W
Wu Yi 已提交
2633
    def _sync_with_cpp(self):
2634
        """
2635 2636
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2637
        """
Q
Qiao Longfei 已提交
2638 2639 2640 2641 2642
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2643
        # sync variables removed from c++ end
2644
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2645
            if not self.desc.find_var(cpt.to_bytes(var)):
2646 2647
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2648
        # sync operators from cpp
2649 2650 2651 2652
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2669 2670 2671 2672 2673

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2674
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2675 2676 2677 2678 2679 2680 2681

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2695 2696 2697 2698
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2699
    def _copy_param_info_from(self, other):
2700
        """
2701 2702
        Copy the information of parameters from the other block.

2703
        Args:
2704 2705 2706 2707 2708
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2709 2710 2711 2712 2713

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2714 2715
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2716
        for p in other.iter_parameters():
2717 2718 2719
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2720 2721
                # if the Parameter is pruned, v may be None
                continue
2722
            assert isinstance(v, Variable)
2723
            new_p = None
L
Leo Chen 已提交
2724 2725
            if in_dygraph_mode():
                new_p = ParamBase(
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2737 2738
                new_p = Parameter(
                    block=self,
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
2749 2750
            self.vars[new_p.name] = new_p

2751
    def _clone_variable(self, var, force_persistable=True):
2752 2753
        """
        Clone a variable into current block.
2754

2755 2756
        Args:
            var: the variable to be cloned.
2757 2758 2759
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2760 2761

        Returns:
2762
            Variable: the new  variable cloned from 'var' in current block.
2763 2764
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2765 2766 2767 2768 2769
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2770 2771
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2772
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2773 2774 2775 2776 2777 2778
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2779
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2780 2781
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2782 2783 2784 2785 2786 2787 2788
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2789
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2790 2791
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2792
        return ret_var
2793

Y
Yu Yang 已提交
2794

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2890
    def remove_input_by_id(self, node_id):
2891 2892 2893 2894 2895 2896
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2897
        self.node.remove_input(node_id)
2898

2899
    def remove_input(self, node):
2900 2901 2902 2903
        """
        Remove a node from inputs.

        Args:
2904
            node(IrNode): the node being removed.
2905
        """
2906
        self.node.remove_input(node.node)
2907

2908
    def append_input(self, node):
2909 2910 2911 2912
        """
        Append a node in inputs.

        Args:
2913
            node(IrNode): the node being appended.
2914
        """
2915
        self.node.append_input(node.node)
2916 2917 2918 2919 2920 2921 2922 2923

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2924
    def remove_output_by_id(self, node_id):
2925 2926 2927 2928 2929 2930
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2931
        self.node.remove_output(node_id)
2932

2933
    def remove_output(self, node):
2934 2935 2936 2937
        """
        Remove a node from outputs.

        Args:
2938
            node(IrNode): the node being removed.
2939
        """
2940
        self.node.remove_output(node.node)
2941

2942
    def append_output(self, node):
2943 2944 2945 2946
        """
        Append a node in outputs.

        Args:
2947
            node(IrNode): the node being appended.
2948
        """
2949
        self.node.append_output(node.node)
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
2997
            "The node variable description can not be None."
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3008
            "The node variable description can not be None."
3009 3010
        return self.node.var().persistable()

3011 3012 3013 3014 3015 3016 3017 3018
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3019
            "The node variable description can not be None."
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3030
            "The node variable description can not be None."
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3041
            "The node variable description can not be None."
3042 3043
        return self.node.var().shape()

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3091
            "The node operator description can not be None."
3092 3093
        self.node.op()._rename_input(old_input_name, new_input_name)

3094 3095 3096 3097 3098 3099 3100 3101 3102
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3103
            "The node operator description can not be None."
3104 3105 3106 3107
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3119
            "The node operator description can not be None."
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3133
            "The node operator description can not be None."
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3144
            "The node operator description can not be None."
3145 3146
        return self.node.op().set_type(new_type)

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3162
            "The node operator description can not be None."
3163 3164 3165 3166
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3167
                all(isinstance(v, Block) for v in val):
3168 3169
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3170
                isinstance(val, core.ProgramDesc):
3171 3172 3173 3174
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3175 3176 3177 3178 3179 3180 3181 3182
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3183
            "The node operator description can not be None."
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3194
            "The node operator description can not be None."
3195 3196
        return self.node.op().output_arg_names()

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3218 3219
class IrGraph(object):
    """
3220
    Python IrGraph. Beneath it is a core.Graph, which is used for
3221
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3222 3223
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3224 3225 3226 3227
    """

    def __init__(self, graph, for_test=False):
        """
3228 3229
        Construct an IrGraph using core.Graph.

3230 3231 3232 3233 3234 3235 3236 3237 3238
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3239 3240 3241 3242
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3243 3244 3245
        Warns:
            The method only clones the graph structure, not its attributes.

3246 3247 3248
        Returns:
            IrGraph: A new and duplicated graph.
        """
3249
        g = self.graph.clone()
3250 3251
        return IrGraph(g, self._for_test)

3252
    def is_test(self):
3253 3254 3255
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3256 3257
        return self._for_test

W
WangZhen 已提交
3258
    def all_nodes(self):
3259 3260 3261
        """
        Return all nodes included in the graph as a set.
        """
3262
        return {IrNode(node) for node in self.graph.nodes()}
3263

3264
    def all_var_nodes(self):
3265 3266 3267
        """
        Return all variable nodes included in the graph as a set.
        """
3268
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3269

3270
    def all_persistable_nodes(self):
3271 3272 3273
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3274 3275 3276 3277 3278
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3279
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3280

3281
    def all_op_nodes(self):
3282 3283 3284
        """
        Return all operator nodes included in the graph as a set.
        """
3285
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3286

3287
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3299
            IrVarNode: the created persistable variable node.
3300
        """
3301 3302 3303 3304 3305
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3306
        return IrVarNode(self.graph.create_var_node(var_desc))
3307 3308

    def create_var_node(self, name, var_type, shape, var_dtype):
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3320
            IrVarNode: the created variable node.
3321 3322
        """

3323 3324 3325 3326
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3327
        return IrVarNode(self.graph.create_var_node(var_desc))
3328 3329

    def create_var_node_from_desc(self, var_desc):
3330 3331 3332 3333 3334 3335 3336 3337
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3338
            IrVarNode: the created variable node.
3339
        """
3340
        return IrVarNode(self.graph.create_var_node(var_desc))
3341 3342

    def create_op_node(self, op_type, attrs, inputs, outputs):
3343 3344 3345 3346 3347 3348 3349
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3350
            outputs(dict): the outputs of the operator node.
3351 3352

        Returns:
3353
            IrOpNode: the created operator node.
3354
        """
3355 3356
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3357
        for attr, value in six.iteritems(attrs):
3358
            self._update_desc_attr(op_desc, attr, value)
3359
        for input_name, var_nodes in six.iteritems(inputs):
3360 3361 3362 3363
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3364
        for output_name, var_nodes in six.iteritems(outputs):
3365 3366 3367 3368
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3369
        return IrOpNode(self.graph.create_op_node(op_desc))
3370 3371

    def create_op_node_from_desc(self, op_desc):
3372 3373 3374 3375 3376 3377 3378
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3379
            IrOpNode: the created operator node.
3380
        """
3381
        return IrOpNode(self.graph.create_op_node(op_desc))
3382 3383

    def update_input_link(self, old_input_node, new_input_node, op_node):
3384 3385 3386 3387
        """
        Update the input's link of a operator node.

        Args:
3388 3389 3390
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3391
        """
3392
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3393 3394
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3395 3396 3397 3398
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3399
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3400

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3411 3412
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3413 3414 3415 3416 3417 3418
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3419
    def link_to(self, node_in, node_out):
3420 3421 3422 3423
        """
        Connect two nodes.

        Args:
3424 3425
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3426
        """
3427
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3428
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3429 3430
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3431 3432

    def safe_remove_nodes(self, remove_nodes):
3433 3434 3435 3436 3437 3438 3439
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3440
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3441 3442 3443 3444
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3445 3446
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3447

Z
Zhen Wang 已提交
3448 3449 3450 3451 3452 3453 3454 3455
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3456
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3457 3458 3459 3460
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3461
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3462 3463 3464
                        ]
                    else:
                        var_nodes[each_var_name].append(
3465 3466
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3467 3468
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3469
    def has_circle(self):
3470 3471 3472 3473 3474 3475
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3476 3477 3478
        return core.has_circle(self.graph)

    def graph_num(self):
3479 3480 3481 3482 3483 3484
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3485 3486 3487
        return core.graph_num(self.graph)

    def topology_sort(self):
3488 3489 3490
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3491
        Notes: the `graph` can not contain a circle.
3492 3493

        Returns:
Z
Zhen Wang 已提交
3494
            list(IrNode): nodes in topology order.
3495
        """
3496
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3497
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3498 3499

    def build_adjacency_list(self):
3500 3501 3502 3503
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3504
            dict{IrNode: set(IrNode)}: the adjacency list.
3505
        """
3506 3507 3508 3509 3510
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3511

3512 3513 3514 3515 3516 3517 3518 3519
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3520
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3521 3522 3523 3524 3525
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3526 3527 3528
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3529
                                          + ' -o ' + pdf_save_path, shell=True)
3530 3531 3532 3533 3534
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3535
        remove_ctr_vars = set()
3536
        if remove_ctr_var:
3537
            for node in self.all_var_nodes():
3538 3539 3540
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3541 3542
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3543 3544
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3545 3546 3547 3548 3549 3550
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3551 3552 3553 3554
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3555 3556
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3557 3558 3559 3560 3561 3562 3563
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3564 3565 3566
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3567
        WARN: When the graph includes backward operator nodes, the
3568 3569 3570 3571 3572 3573
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3574
        convert_pass = core.get_pass('graph_to_program_pass')
3575 3576
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3577 3578 3579 3580
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3608
class Program(object):
D
dzhwinter 已提交
3609
    """
3610 3611
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3612
    it will contain nested block.
3613

J
Jiabin Yang 已提交
3614 3615 3616
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3617

J
Jiabin Yang 已提交
3618
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3619
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3620 3621 3622 3623 3624 3625 3626
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3627 3628 3629 3630
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3631 3632

    Returns:
J
Jiabin Yang 已提交
3633
        Program: An empty Program.
D
dzhwinter 已提交
3634 3635

    Examples:
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3649 3650 3651

    """

3652 3653
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3654 3655
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3656
        self._seed = 0
Y
yuyang18 已提交
3657
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3658
        self.__op_role_var = []
T
tangwei12 已提交
3659

3660 3661
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3662
        self._is_distributed = False
3663
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3664
        self._is_chief = False
3665 3666 3667
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3668
        self._endpoints = []
3669 3670 3671
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3672
        self._trainers_endpoints = []
3673
        # the distributed lookup table names
T
tangwei12 已提交
3674
        self._distributed_lookup_table = None
3675 3676 3677

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3678 3679
        self._use_lamb = False

3680 3681 3682
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3683

3684 3685 3686
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3687
        self._program_config = None
3688

H
hutuxian 已提交
3689 3690 3691
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3692 3693 3694
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3695
    @property
3696
    def _op_role(self):
Y
yuyang18 已提交
3697 3698 3699 3700 3701 3702 3703 3704
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3705
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3706 3707 3708 3709
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3710 3711
        return self._current_role

3712 3713
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3714 3715 3716
        self._current_role = role

    @property
3717
    def _op_role_var(self):
Y
yuyang18 已提交
3718
        """
3719
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3720

3721
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3722 3723 3724

        Notes: This is a very low-level API. Users should not use it directly.
        """
3725
        return self.__op_role_var
Y
yuyang18 已提交
3726

3727 3728 3729 3730 3731 3732 3733 3734 3735
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3736
    @signature_safe_contextmanager
W
Wu Yi 已提交
3737
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3738 3739 3740 3741 3742 3743 3744
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3745
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3746 3747 3748

        Examples:

3749
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3750
            >>> p, g = backward(...)
W
Wu Yi 已提交
3751
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3752 3753
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3754
        tmp_role = self._current_role
3755
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3756

Y
yuyang18 已提交
3757 3758
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3759
        self.__op_role_var = [
3760 3761 3762
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3763
        yield
3764
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3765
        self._current_role = tmp_role
Y
Yu Yang 已提交
3766

S
rename  
sneaxiy 已提交
3767
    @signature_safe_contextmanager
X
Xin Pan 已提交
3768
    def _lr_schedule_guard(self, is_with_opt=False):
3769 3770 3771 3772 3773 3774 3775
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3776 3777 3778 3779
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3780 3781 3782

        Examples:

3783
            >>> import paddle.fluid as fluid
3784 3785 3786 3787
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3788 3789

        tmp_role = self._current_role
3790
        tmp_var = self.__op_role_var
3791

3792 3793
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3794 3795
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3796
        # TODO(typhoonzero): how to set target learning rate var
3797
        self.__op_role_var = []
3798
        yield
3799
        self.__op_role_var = tmp_var
3800
        self._current_role = tmp_role
3801

3802
    def __str__(self):
Y
yuyang18 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3812 3813
        return self.to_string(True)

F
fengjiayi 已提交
3814 3815 3816
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3817

J
Jiabin Yang 已提交
3818 3819 3820
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3821

J
Jiabin Yang 已提交
3822
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3823

H
haowang101779990 已提交
3824
        Returns:
J
Jiabin Yang 已提交
3825
            str: The debug string describe current Program.
Y
yuyang18 已提交
3826 3827

        Raises:
J
Jiabin Yang 已提交
3828
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3829

3830 3831 3832 3833 3834 3835
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
3836 3837
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
3838
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
3839
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
3840
                print("program string without detail: {}".format(prog_string))
3841
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
3842
        """
3843 3844 3845 3846 3847 3848 3849 3850 3851
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
3852 3853 3854 3855 3856 3857
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3858 3859
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3860 3861
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3862

W
Wu Yi 已提交
3863
    def _get_desc(self):
Y
yuyang18 已提交
3864 3865 3866 3867 3868 3869 3870
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3871 3872
        return self.desc

X
version  
Xin Pan 已提交
3873 3874 3875
    def _version(self):
        return self.desc._version()

3876
    @dygraph_not_support
3877
    def clone(self, for_test=False):
Y
yuyang18 已提交
3878
        """
3879
        **Notes**:
J
Jiabin Yang 已提交
3880 3881 3882 3883
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3884
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3885

3886
        Create a new Program with forward content of original one when ``for_test=True``.
3887
        Create a new Program as same as the original one when ``for_test=False``.
3888

J
Jiabin Yang 已提交
3889
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3890 3891 3892
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3893

3894 3895
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
3896 3897
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3898
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3899

J
Jiabin Yang 已提交
3900
        For Example:
3901
          ::
L
Luo Tao 已提交
3902

3903 3904 3905 3906 3907 3908 3909 3910
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
3911

J
Jiabin Yang 已提交
3912
        Args:
3913

3914 3915
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
3916

J
Jiabin Yang 已提交
3917
        Returns:
3918
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
3919

Y
yuyang18 已提交
3920 3921 3922

        Examples:

J
Jiabin Yang 已提交
3923
        **Notes: The Program's order maybe different after** :code:`clone` **and
3924
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3925
        example we give you an simple method** :code:`print_prog(program)` **to
3926
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3927
        after** :code:`clone`:
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3964 3965 3966

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3967 3968 3969 3970 3971 3972 3973 3974 3975
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
3976
                            test_program = train_program.clone(for_test=True)
3977
                    print_prog(test_program)
J
Jiabin Yang 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4009 4010
                    
                    def network():
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4025 4026 4027
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4028
                    # the test startup program is not used.
4029
                    with fluid.program_guard(test_program_2, startup_program_2):
4030
                        with fluid.unique_name.guard():
4031 4032
                            avg_loss = network()
                    print_prog(test_program_2)
4033 4034

        The two code snippets above will generate and print same programs.
4035
        """
4036 4037 4038 4039 4040

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4041
        pruned_origin_block_id_map = None
4042
        if for_test:
4043 4044 4045 4046 4047 4048 4049 4050 4051
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4052
        else:
4053
            p = Program()
G
gongweibao 已提交
4054 4055
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4056
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4057 4058 4059
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4060 4061

            p._current_role = self._current_role
4062
            p.__op_role_var = self.__op_role_var
4063
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4064

4065 4066
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4067
            p._sync_with_cpp()
4068

W
Wu Yi 已提交
4069
        p._copy_param_info_from(self)
4070
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4071
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4072
        return p
4073

4074
    def _prune(self, targets):
Y
yuyang18 已提交
4075 4076 4077 4078 4079 4080 4081 4082
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4083
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4084 4085 4086 4087
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4088
        """
4089
        return self._prune_with_input([], targets)
4090 4091

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4092
        """
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4103
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4104 4105 4106 4107 4108 4109
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4110 4111 4112 4113
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4114 4115
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4116 4117
        if not isinstance(targets, list):
            targets = [targets]
4118 4119 4120

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4121 4122 4123
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4124

4125 4126 4127 4128
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4129 4130 4131
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4132
                else:
4133 4134 4135
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
                t = target_op
                if t is None:
                    raise ValueError("The target variable must have an "
                                     "associated operator that generates it.")
4156
            targets_idx.append([t.block.idx, t.idx])
4157

4158
        res = Program()
4159 4160 4161
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4162 4163 4164
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4165
        res._sync_with_cpp()
4166 4167 4168 4169 4170

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4171 4172
        return res

X
Xin Pan 已提交
4173
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4174
        """
F
fengjiayi 已提交
4175 4176 4177 4178 4179
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4180
        3. change the :code:`is_test`
Y
yuyang18 已提交
4181 4182 4183
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4184
        Args:
X
Xin Pan 已提交
4185 4186
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4187

Y
yuyang18 已提交
4188 4189 4190 4191 4192 4193
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4194
        res = Program()
4195
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4196 4197 4198 4199

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4200
        if prune_read_op:
4201 4202 4203 4204 4205 4206 4207 4208 4209
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4210
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4211 4212

        # change all `is_test` attributes to True
M
minqiyang 已提交
4213
        for i in six.moves.range(res.desc.num_blocks()):
4214
            block = res.desc.block(i)
M
minqiyang 已提交
4215
            for j in six.moves.range(block.op_size()):
4216 4217
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4218
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4219 4220 4221
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4222
        res._sync_with_cpp()
4223 4224
        return res

4225 4226
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4227
        """
J
Jiabin Yang 已提交
4228 4229 4230 4231
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4232

4233 4234
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4235

J
Jiabin Yang 已提交
4236
        Args:
Y
yuyang18 已提交
4237

J
Jiabin Yang 已提交
4238
            binary_str_type (str): the binary prootbuf string.
4239

J
Jiabin Yang 已提交
4240 4241
        Returns:
            Program: A deserialized Program.
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4264
        """
4265 4266
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4267
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4268
        p._sync_with_cpp()
4269
        return p
Y
Yu Yang 已提交
4270

4271
    @staticmethod
4272
    def _construct_from_desc(desc):
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4288 4289
    @property
    def random_seed(self):
Y
yuyang18 已提交
4290
        """
J
Jiabin Yang 已提交
4291
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4292 4293
        the random seed from random device.

J
Jiabin Yang 已提交
4294 4295 4296 4297
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4298

4299 4300 4301 4302 4303 4304 4305 4306

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4307
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4308 4309 4310
                print(random_seed)
                ## 0
                ## the default random seed is 0
4311 4312

                # Here we need to set random seed before we use fluid.layers.dropout
4313
                prog.random_seed = 1
4314 4315
                z_var = fluid.layers.dropout(x_var, 0.7)

4316
                print(prog.random_seed)
4317 4318
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4319
        """
D
dzhwinter 已提交
4320 4321
        return self._seed

Q
qiaolongfei 已提交
4322 4323
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4324
        """
4325 4326
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4327 4328 4329 4330
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4331

4332 4333 4334 4335 4336 4337 4338 4339 4340

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4341 4342


Y
yuyang18 已提交
4343
        """
Q
qiaolongfei 已提交
4344 4345
        return self.desc.num_blocks()

D
dzhwinter 已提交
4346 4347 4348
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4349 4350 4351
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4352 4353
        self._seed = seed

Y
Yu Yang 已提交
4354
    def __repr__(self):
4355
        return self.__str__()
4356

Y
Yu Yang 已提交
4357
    def global_block(self):
Y
yuyang18 已提交
4358
        """
J
Jiabin Yang 已提交
4359 4360
        **Notes**:
            **This API has no effect in Dygraph mode**
4361 4362 4363

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4364 4365
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4366

4367 4368 4369 4370 4371 4372 4373 4374 4375

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4376

Y
yuyang18 已提交
4377
        """
Y
Yu Yang 已提交
4378 4379
        return self.blocks[0]

Q
Qiao Longfei 已提交
4380
    def block(self, index):
Y
yuyang18 已提交
4381
        """
J
Jiabin Yang 已提交
4382 4383
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4384

4385 4386
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4387 4388
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4389

J
Jiabin Yang 已提交
4390 4391
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4392 4393 4394 4395 4396 4397 4398 4399 4400

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4401
        """
Q
Qiao Longfei 已提交
4402 4403
        return self.blocks[index]

Y
Yu Yang 已提交
4404
    def current_block(self):
Y
yuyang18 已提交
4405
        """
J
Jiabin Yang 已提交
4406 4407
        **Notes**:
            **This API has no effect in Dygraph mode**
4408

J
Jiabin Yang 已提交
4409 4410
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4411

J
Jiabin Yang 已提交
4412 4413
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4414

4415 4416 4417 4418 4419 4420 4421 4422
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4423
        """
Y
Yu Yang 已提交
4424 4425
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4426
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4427 4428 4429 4430 4431
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4432

Y
yuyang18 已提交
4433 4434 4435 4436 4437
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4438
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4439 4440 4441
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4442 4443 4444 4445
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4446
    def _rollback(self):
Y
yuyang18 已提交
4447 4448 4449 4450 4451
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4452 4453
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4454
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4465 4466 4467
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4468
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4469

W
Wu Yi 已提交
4470
    def _copy_param_info_from(self, other):
4471
        """
4472
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4473

Y
yuyang18 已提交
4474 4475 4476
        Notes: This is a very low level API. Users should not invoke it
        directly.

4477 4478 4479 4480 4481 4482 4483
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4484 4485 4486
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4487

W
Wu Yi 已提交
4488
        self.global_block()._copy_param_info_from(other.global_block())
4489

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4501 4502 4503
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4504 4505
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4506
        self._parameters_on_pservers = other._parameters_on_pservers
4507
        self._endpoints = other._endpoints
4508
        self._ps_endpoint = other._ps_endpoint
4509 4510
        self._distributed_lookup_table = other._distributed_lookup_table

4511
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4512 4513
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4514

Y
yuyang18 已提交
4515 4516 4517
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4518 4519
        Args:
            other(Program): Other program
4520 4521 4522 4523
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4524 4525 4526 4527 4528

        Returns:
            None
        """
        if not isinstance(other, Program):
4529 4530 4531
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4532

4533 4534 4535 4536 4537
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4538 4539 4540

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4541 4542
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4543
            for var in list(block.vars.values()):
4544 4545 4546 4547 4548 4549 4550
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4551

4552
    @dygraph_not_support
4553
    def list_vars(self):
Y
yuyang18 已提交
4554
        """
J
Jiabin Yang 已提交
4555
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4556

J
Jiabin Yang 已提交
4557 4558
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4570
        """
4571
        for each_block in self.blocks:
4572
            for each_var in list(each_block.vars.values()):
4573 4574
                yield each_var

4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
    @dygraph_not_support
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4634

4635
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4636
class Parameter(Variable):
4637
    """
4638
    Parameter is derived from Variable. A parameter is a persistable
4639
    Variable, and will be updated by optimizers after each iteration.
4640
    The training of a neural network is essentially the updating of
4641 4642
    its parameters.

4643
    Relative to a general Variable, a Parameter has several its own
4644 4645
    member variables:

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4656 4657
    """

4658 4659 4660 4661 4662 4663
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4664 4665 4666 4667 4668
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4669
        if len(shape) == 0:
4670 4671
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4672 4673 4674

        for each in shape:
            if each < 0:
4675 4676 4677
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4678 4679

        Variable.__init__(
4680 4681 4682 4683 4684 4685 4686
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
4687 4688 4689 4690
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4691 4692
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
4693
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4694

4695 4696
        self.is_distributed = False

F
fengjiayi 已提交
4697 4698 4699
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4700 4701 4702
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4703

F
update  
fengjiayi 已提交
4704 4705 4706 4707 4708 4709 4710 4711
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4712 4713 4714 4715 4716 4717 4718 4719 4720
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4721 4722 4723 4724 4725 4726
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
4727
                               "do_model_average")
F
update  
fengjiayi 已提交
4728
            for attr_name in additional_attr:
4729 4730
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4731 4732
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4733 4734 4735 4736
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4737

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

4798
        # self.block = default_main_program().global_block()
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
            return 'name %s, dtype: %s shape: %s %s' % (self.name, self.dtype,
                                                        self.shape, str(tensor))
        else:
            return 'name %s, shape: %s, not inited' % (self.name, self.shape)

    __repr__ = __str__


Y
Yu Yang 已提交
4837
# program is a global instance.
Y
Yu Yang 已提交
4838 4839
_main_program_ = Program()
_startup_program_ = Program()
4840

4841

4842
def default_startup_program():
Y
Yu Yang 已提交
4843
    """
Y
yuyang18 已提交
4844 4845
    Get default/global startup program.

J
Jiabin Yang 已提交
4846 4847 4848
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4849 4850 4851
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4852
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4853

J
Jiabin Yang 已提交
4854
    Returns: current default startup :ref:`api_fluid_Program`
4855

J
Jiabin Yang 已提交
4856
    Returns type: :ref:`api_fluid_Program`
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4872
    """
Y
Yu Yang 已提交
4873
    return _startup_program_
4874

4875

4876
def default_main_program():
Y
Yu Yang 已提交
4877
    """
4878 4879 4880 4881 4882
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4883

4884 4885
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4886
    :code:`default_main_program` when the program is not specified.
4887

4888 4889
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4890
    Returns:
4891
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4892 4893 4894 4895 4896

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4897

4898
            # Sample Network:
4899 4900
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4920
            #print the number of blocks in the program, 1 in this case
4921
            print(fluid.default_main_program().num_blocks)
4922 4923

            #print the description of variable 'image'
4924
            print(fluid.default_main_program().blocks[0].var('image'))
4925

Y
Yu Yang 已提交
4926
    """
Y
Yu Yang 已提交
4927
    return _main_program_
Y
Yu Yang 已提交
4928 4929 4930 4931 4932


def switch_main_program(program):
    """
    Switch the main program to a new program.
4933

Y
Yu Yang 已提交
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4948
    Switch the startup program to a new program
Y
Yu Yang 已提交
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4961
@signature_safe_contextmanager
Y
Yu Yang 已提交
4962 4963
def program_guard(main_program, startup_program=None):
    """
4964 4965
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4966
    variables to the new main programs.
4967

G
guofei 已提交
4968 4969 4970 4971 4972 4973 4974
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4975
    Examples:
4976 4977 4978
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4979

4980 4981 4982
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
4983
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4984
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4985 4986 4987

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4988

Y
Yu Yang 已提交
4989
    Examples:
4990
       .. code-block:: python
Y
yuyang18 已提交
4991

4992 4993 4994 4995 4996
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
4997 4998
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
4999
    """
5000 5001
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5002 5003
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5004 5005
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5006 5007 5008 5009 5010
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
5011 5012


W
Wu Yi 已提交
5013
def _get_var(name, program=None):
X
xuwei06 已提交
5014
    """
Y
yuyang18 已提交
5015
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5016

X
xuwei06 已提交
5017 5018 5019
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5020
        If None, default_global_program() will be used.
X
xuwei06 已提交
5021 5022 5023 5024 5025 5026 5027

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5028
    assert isinstance(program, Program)
X
xuwei06 已提交
5029 5030

    return program.global_block().var(name)
5031 5032


S
rename  
sneaxiy 已提交
5033
@signature_safe_contextmanager
L
lujun 已提交
5034 5035 5036 5037
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5038
    core._switch_tracer(tracer)
M
minqiyang 已提交
5039

5040
    yield
P
Paddle CI 已提交
5041

5042
    core._switch_tracer(tmp_trace)
L
lujun 已提交
5043
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5044 5045


S
rename  
sneaxiy 已提交
5046
@signature_safe_contextmanager
L
lujun 已提交
5047 5048 5049 5050
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5051

5052
    yield
M
minqiyang 已提交
5053

L
lujun 已提交
5054
    _dygraph_current_expected_place_ = tmp_place
5055 5056 5057 5058 5059 5060 5061


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5062
    Please note, the type of custom operators can't have the same type
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
    pre_device = switch_device(device)
    yield
    switch_device(pre_device)
G
guofei 已提交
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value