rnn_op_xpu.cc 19.0 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/utils.h"
16
#include "paddle/fluid/platform/device/device_wrapper.h"
17
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
18
#include "paddle/fluid/platform/device_context.h"
19
#include "paddle/phi/kernels/funcs/math_function.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;
using TensorList = std::vector<framework::Tensor>;
template <typename TensorType, typename T>
void reset_parameter_vector(const std::vector<TensorType>& raw_params_vec,
                            const int& num_layers, const bool& is_bidirec,
                            std::vector<std::vector<T*>>* params_vec) {
  // the parameter raw seuquence is [FWhi, FWhh, BWhi, BWhh] * num_layers
  // + [FBhi, FBhh, BBhi, BBhh] * num_layers, we will reset the parameter to
  // ([FWhi, FWhh, FBhi, FBhh] + [BWhi, BWhh, BBhi, BBhh]) * num_layers
  const int& direction_num = is_bidirec ? 2 : 1;
  const int& layer_weight_size = 4 * direction_num;
  const int& all_weight_size = num_layers * layer_weight_size;
  const int& bias_start_idx = all_weight_size / 2;
  for (int i = 0; i < num_layers; i++) {
    params_vec->at(i).resize(layer_weight_size);
    for (int j = 0; j < layer_weight_size; j++) {
      int k = j % 4;
      const int& section = j / 4;
      int tensor_idx = i * 2 * direction_num + section * 2 + k % 2;
      if (k >= 2) {
        tensor_idx += bias_start_idx;
      }
      using remove_cv_t = typename std::remove_cv<T>::type;
      params_vec->at(i)[j] =
          raw_params_vec[tensor_idx]->template data<remove_cv_t>();
    }
  }
}

template <typename DeviceContext, typename T>
class RnnXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
58
    // Input
59 60 61
    auto* input = ctx.Input<Tensor>("Input");
    auto pre_state = ctx.MultiInput<Tensor>("PreState");
    auto weight_list = ctx.MultiInput<framework::Tensor>("WeightList");
62 63
    bool has_seq_length = ctx.HasInput("SequenceLength");
    // Output
64 65
    auto state = ctx.MultiOutput<Tensor>("State");
    auto* output = ctx.Output<Tensor>("Out");
66
    auto* dropout_mask = ctx.Output<Tensor>("DropoutState");
67
    auto* reserve_data = ctx.Output<Tensor>("Reserve");
68
    // Attrbutes
69 70 71 72 73 74 75 76 77 78
    const int& num_layers = ctx.Attr<int>("num_layers");
    const bool& is_bidirec = ctx.Attr<bool>("is_bidirec");
    const int& hidden_size = ctx.Attr<int>("hidden_size");
    const std::string& mode = ctx.Attr<std::string>("mode");

    const Tensor* sequence_length = nullptr;
    if (has_seq_length) {
      sequence_length = ctx.Input<Tensor>("SequenceLength");
    }

79 80 81 82
    if (dropout_mask->IsInitialized()) {
      if (dropout_mask->numel() != output->numel()) dropout_mask->clear();
    }
    dropout_mask->mutable_data<uint8_t>(output->dims(), ctx.GetPlace());
83 84 85
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    phi::funcs::SetConstant<platform::XPUDeviceContext, uint8_t> ones;
    ones(dev_ctx, dropout_mask, static_cast<uint8_t>(1));
86

87 88 89 90 91 92 93 94 95 96 97
    PADDLE_ENFORCE_EQ(
        mode, "LSTM",
        platform::errors::InvalidArgument(
            "XPU only support LSTM mode now, current mode is %s", mode));

    auto init_h = pre_state[0];
    auto init_c = pre_state[1];
    auto last_h = state[0];
    auto last_c = state[1];

    // check shape
98 99 100 101
    const int& seq_len = input->dims()[0];  // time_step
    const int& batch_size = input->dims()[1];
    const int& input_dim = input->dims()[2];
    const int& direction_num = is_bidirec ? 2 : 1;
102 103

    PADDLE_ENFORCE_EQ(
104
        init_h->dims()[0], num_layers * direction_num,
105 106 107 108 109 110 111
        platform::errors::InvalidArgument("The num_layers of in RNN layer must"
                                          " be the same as first dim of init "
                                          "hidden, but received num_layers:%d,"
                                          " dim:%d",
                                          num_layers, init_h->dims()[0]));

    PADDLE_ENFORCE_EQ(
112
        init_c->dims()[0], num_layers * direction_num,
113 114 115 116 117
        platform::errors::InvalidArgument(
            "The num_layers of in RNN layer must"
            " be the same as first dim of cell state hidden, but received"
            " num_layers:%d, dim:%d",
            num_layers, init_c->dims()[0]));
118
    // weightlist
119 120 121 122 123 124 125 126 127
    std::vector<std::vector<const T*>> parameter_lists;
    parameter_lists.resize(num_layers);
    reset_parameter_vector(weight_list, num_layers, is_bidirec,
                           &parameter_lists);

    // init the output and allocate the memory
    output->mutable_data<T>(ctx.GetPlace());
    last_h->mutable_data<T>(ctx.GetPlace());
    last_c->mutable_data<T>(ctx.GetPlace());
128 129 130 131 132
    int gate_num = 4;
    int hidden_data_idx = (num_layers - 1);
    hidden_data_idx += (gate_num + 1) * num_layers;
    const int& block_size = direction_num * seq_len * batch_size * hidden_size;
    reserve_data->Resize({hidden_data_idx, block_size});
133

134
    reserve_data->mutable_data<T>(ctx.GetPlace());
135 136
    // get ptr from tensor
    auto x = input->data<T>();
137 138
    auto init_h_ptr = init_h->data<T>();
    auto init_c_ptr = init_c->data<T>();
139 140 141
    auto y = output->data<T>();
    auto last_h_ptr = last_h->data<T>();
    auto last_c_ptr = last_c->data<T>();
142 143
    auto i_f_g_o_ptr = reserve_data->data<T>();
    auto c_ptr =
144 145 146
        i_f_g_o_ptr + num_layers * block_size * 4;  // 4 for i_f_g_o offset
    auto hidden_data_ptr =
        c_ptr + num_layers * block_size * 1;  // 1 for c offset
147 148 149 150 151 152

    std::vector<int> seq_len_tensor(batch_size, seq_len);
    if (has_seq_length) {
      seq_len_tensor = operators::GetDataFromTensor(sequence_length);
    }

153 154
    int state_offset = pre_state[0]->dims()[1] * pre_state[0]->dims()[2];

155 156 157
    const T* cur_input_ptr = nullptr;
    int cur_xdim = -1;
    T* cur_output_ptr = y;
158
    for (int i = 0; i < num_layers; i++) {
159 160 161 162 163 164 165
      auto i_f_g_o = i_f_g_o_ptr + i * block_size * 4;
      auto c = c_ptr + i * block_size;

      cur_output_ptr = y;
      if (i < num_layers - 1 && num_layers > 1) {
        cur_output_ptr = hidden_data_ptr + i * block_size;
      }
166

167 168 169 170
      if (i == 0) {
        cur_input_ptr = x;
        cur_xdim = input_dim;
      } else {
171
        cur_input_ptr = hidden_data_ptr + (i - 1) * block_size;
172 173 174
        cur_xdim = is_bidirec ? 2 * hidden_size : hidden_size;
      }

175 176 177 178
      auto h_0 = init_h_ptr + direction_num * i * state_offset;
      auto c_0 = init_c_ptr + direction_num * i * state_offset;
      auto last_h = last_h_ptr + direction_num * i * state_offset;
      auto last_c = last_c_ptr + direction_num * i * state_offset;
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      auto w_x = parameter_lists[i][0];
      auto w_h = parameter_lists[i][1];
      auto b_x = parameter_lists[i][2];
      auto b_h = parameter_lists[i][3];
      if (is_bidirec) {
        auto bw_x = parameter_lists[i][4];
        auto bw_h = parameter_lists[i][5];
        auto bb_x = parameter_lists[i][6];
        auto bb_h = parameter_lists[i][7];

        int r = xpu::bilstm_train<T, T, int16_t>(
            dev_ctx.x_context(), (const T*)cur_input_ptr, (const T*)h_0,
            (const T*)c_0, (const T*)w_x, (const T*)w_h, (const T*)b_x,
            (const T*)b_h, (const T*)bw_x, (const T*)bw_h, (const T*)bb_x,
            (const T*)bb_h, reinterpret_cast<T*>(cur_output_ptr),
            reinterpret_cast<T*>(last_h), reinterpret_cast<T*>(last_c),
            batch_size, cur_xdim, hidden_size, seq_len, seq_len_tensor, nullptr,
            nullptr, nullptr, nullptr, nullptr, nullptr,
            reinterpret_cast<T*>(i_f_g_o), reinterpret_cast<T*>(c));

        PADDLE_ENFORCE_XDNN_SUCCESS(r, "bilstm_train");
201
      } else {
202 203 204 205 206 207 208 209 210 211 212
        int r = xpu::lstm_train<T, T, int16_t>(
            dev_ctx.x_context(), (const T*)cur_input_ptr, (const T*)h_0,
            (const T*)c_0, (const T*)w_x, (const T*)w_h, (const T*)b_x,
            (const T*)b_h, reinterpret_cast<T*>(cur_output_ptr),
            reinterpret_cast<T*>(last_h), reinterpret_cast<T*>(last_c),
            batch_size, cur_xdim, hidden_size, seq_len, seq_len_tensor, nullptr,
            nullptr, nullptr, nullptr, reinterpret_cast<T*>(i_f_g_o),
            reinterpret_cast<T*>(c), xpu::Activation_t::TANH,
            xpu::Activation_t::SIGMOID);

        PADDLE_ENFORCE_XDNN_SUCCESS(r, "lstm_train");
213 214
      }
    }
215 216 217 218 219
  }
};

template <typename DeviceContext, typename T>
class RnnXPUGradKernel : public framework::OpKernel<T> {
220 221
  using XPUTyp = typename XPUTypeTrait<T>::Type;

222 223 224 225 226 227 228 229 230 231
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    // get the tensor pointer for the input
    auto* input = ctx.Input<Tensor>("Input");
    auto pre_state = ctx.MultiInput<Tensor>("PreState");
    auto weight_list = ctx.MultiInput<framework::Tensor>("WeightList");
    auto* output = ctx.Input<Tensor>("Out");
    auto* reserve_data = ctx.Input<Tensor>("Reserve");
    const int& num_layers = ctx.Attr<int>("num_layers");
    const bool& is_bidirec = ctx.Attr<bool>("is_bidirec");
232
    const float& dropout_prob = ctx.Attr<float>("dropout_prob");
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    const int& hidden_size = ctx.Attr<int>("hidden_size");
    const std::string& mode = ctx.Attr<std::string>("mode");

    bool has_seq_length = ctx.HasInput("SequenceLength");
    const Tensor* sequence_length = nullptr;
    if (has_seq_length) {
      sequence_length = ctx.Input<Tensor>("SequenceLength");
    }

    PADDLE_ENFORCE_EQ(
        mode, "LSTM",
        platform::errors::InvalidArgument(
            "XPU only support LSTM mode now, current mode is %s", mode));

    auto init_h = pre_state[0];
    auto init_c = pre_state[1];

    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto state_grad = ctx.MultiInput<Tensor>(framework::GradVarName("State"));
    auto last_h_grad = state_grad[0];
    auto last_c_grad = state_grad[1];

    // get the tensor pointer for the output
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto weight_grad_list = ctx.MultiOutput<framework::Tensor>(
        framework::GradVarName("WeightList"));
    auto pre_state_grad =
        ctx.MultiOutput<Tensor>(framework::GradVarName("PreState"));
    Tensor* init_h_grad = nullptr;
    Tensor* init_c_grad = nullptr;
    if (pre_state_grad.size() > 0) {  // has gradient
      init_h_grad = pre_state_grad[0];
      init_c_grad = pre_state_grad[1];
    }

    // check shape
269 270 271 272
    const int& seq_len = input->dims()[0];
    const int& batch_size = input->dims()[1];
    const int& input_dim = input->dims()[2];
    const int& direction_num = is_bidirec ? 2 : 1;
273
    PADDLE_ENFORCE_EQ(
274
        init_h->dims()[0], num_layers * direction_num,
275 276 277 278 279 280 281
        platform::errors::InvalidArgument("The num_layers of in RNN layer must"
                                          " be the same as first dim of init "
                                          "hidden, but received num_layers:%d,"
                                          " dim:%d",
                                          num_layers, init_h->dims()[0]));

    PADDLE_ENFORCE_EQ(
282
        init_c->dims()[0], num_layers * direction_num,
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        platform::errors::InvalidArgument(
            "The num_layers of in RNN layer must"
            " be the same as first dim of cell state hidden, but received"
            " num_layers:%d, dim:%d",
            num_layers, init_c->dims()[0]));

    std::vector<std::vector<const T*>> parameter_lists;
    parameter_lists.resize(num_layers);
    reset_parameter_vector(weight_list, num_layers, is_bidirec,
                           &parameter_lists);

    for (unsigned int i = 0; i < weight_grad_list.size(); ++i) {
      weight_grad_list[i]->mutable_data<T>(ctx.GetPlace());
    }
    std::vector<std::vector<T*>> parameter_lists_grad;
    parameter_lists_grad.resize(num_layers);
    reset_parameter_vector(weight_grad_list, num_layers, is_bidirec,
                           &parameter_lists_grad);

    // allocate the memory and initization the input_grad
    input_grad->mutable_data<T>(input->dims(), ctx.GetPlace());
304 305 306 307 308 309 310
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    phi::funcs::SetConstant<platform::XPUDeviceContext, T> zero;
    zero(dev_ctx, input_grad, static_cast<T>(0.0));

    Tensor a, b;
    Tensor* dynamic_grad_pre_h = &a;
    Tensor* dynamic_grad_pre_c = &b;
311
    if (init_h_grad) {
312 313 314 315 316 317 318
      init_h_grad->mutable_data<T>(last_h_grad->dims(), ctx.GetPlace());
      zero(dev_ctx, init_h_grad, static_cast<T>(0.0));
    } else {
      dynamic_grad_pre_h->Resize(last_h_grad->dims());
      dynamic_grad_pre_h->mutable_data<T>(ctx.GetPlace());
      zero(dev_ctx, dynamic_grad_pre_h, static_cast<T>(0.0));
      init_h_grad = dynamic_grad_pre_h;
319 320
    }
    if (init_c_grad) {
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
      init_c_grad->mutable_data<T>(last_c_grad->dims(), ctx.GetPlace());
    } else {
      dynamic_grad_pre_c->Resize(last_h_grad->dims());
      dynamic_grad_pre_c->mutable_data<T>(ctx.GetPlace());
      init_c_grad = dynamic_grad_pre_c;
    }

    Tensor temp_input_grad_1, temp_input_grad_2;
    T* input_grad_1_ptr = nullptr;
    T* input_grad_2_ptr = nullptr;
    if (num_layers >= 2) {
      temp_input_grad_1.Resize(output_grad->dims());
      input_grad_1_ptr = temp_input_grad_1.mutable_data<T>(ctx.GetPlace());
    }
    if (num_layers >= 3) {
      temp_input_grad_2.Resize(output_grad->dims());
      input_grad_2_ptr = temp_input_grad_2.mutable_data<T>(ctx.GetPlace());
338 339 340 341
    }

    // get ptr from tensor
    auto x = input->data<T>();
342 343
    auto init_h_ptr = init_h->data<T>();
    auto init_c_ptr = init_c->data<T>();
344 345 346 347 348
    auto y = output->data<T>();
    auto y_grad = output_grad->data<T>();
    auto last_h_grad_ptr = last_h_grad->data<T>();
    auto last_c_grad_ptr = last_c_grad->data<T>();
    auto x_grad = input_grad->data<T>();
349 350 351 352 353 354 355
    auto init_h_grad_ptr = init_h_grad->data<T>();
    auto init_c_grad_ptr = init_c_grad->data<T>();
    const int& block_size = direction_num * seq_len * batch_size * hidden_size;
    auto i_f_g_o_ptr = reserve_data->data<T>();
    auto c_ptr = i_f_g_o_ptr + num_layers * block_size * 4;
    auto hidden_data_ptr = c_ptr + num_layers * block_size * 1;
    int state_offset = pre_state[0]->dims()[1] * pre_state[0]->dims()[2];
356 357 358 359 360 361

    std::vector<int> seq_len_tensor(batch_size, seq_len);
    if (has_seq_length) {
      seq_len_tensor = operators::GetDataFromTensor(sequence_length);
    }

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    for (int i = num_layers - 1; i >= 0; --i) {
      // the layer input output had saved, just use the data
      auto w_x = parameter_lists[i][0];
      auto w_h = parameter_lists[i][1];
      auto bw_x = parameter_lists[i][4];
      auto bw_h = parameter_lists[i][5];

      auto i_f_g_o = i_f_g_o_ptr + i * block_size * 4;
      auto c = c_ptr + i * block_size;

      Tensor layer_input_t;
      auto layer_input = x;
      if (i > 0) {
        layer_input_t.Resize(output->dims());
        layer_input = layer_input_t.mutable_data<T>(ctx.GetPlace());
        float scale = static_cast<float>(1.0f - dropout_prob);
        auto hidden_data = hidden_data_ptr + (i - 1) * block_size;
        int r = xpu::scale(dev_ctx.x_context(),
                           reinterpret_cast<const XPUTyp*>(hidden_data),
                           const_cast<XPUTyp*>(layer_input), output->numel(),
                           false, scale, 0.0f);
        PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
      } else {
        layer_input = x;
      }

      auto layer_output = y;
      if (i == num_layers - 1) {
        layer_output = y;
      } else {
        layer_output = hidden_data_ptr + i * block_size;
      }

      const T* cur_input_ptr = nullptr;
      if (i == num_layers - 1) {
        cur_input_ptr = y_grad;
      } else if (i % 2 != 0) {
        cur_input_ptr = input_grad_2_ptr;
      } else {
        cur_input_ptr = input_grad_1_ptr;
      }

      T* cur_output_ptr = nullptr;
      int cur_xdim = -1;
      if (i == 0) {
        cur_output_ptr = x_grad;
        cur_xdim = input_dim;
      } else if (i % 2 != 0) {
        cur_output_ptr = input_grad_1_ptr;
        cur_xdim = is_bidirec ? 2 * hidden_size : hidden_size;
      } else {
        cur_output_ptr = input_grad_2_ptr;
        cur_xdim = is_bidirec ? 2 * hidden_size : hidden_size;
      }

      auto w_x_grad = parameter_lists_grad[i][0];
      auto w_h_grad = parameter_lists_grad[i][1];
      auto b_x_grad = parameter_lists_grad[i][2];
      auto b_h_grad = parameter_lists_grad[i][3];

      auto h_0 = init_h_ptr + direction_num * i * state_offset;
      auto c_0 = init_c_ptr + direction_num * i * state_offset;

      auto h_0_grad = init_h_grad_ptr + direction_num * i * state_offset;
      auto c_0_grad = init_c_grad_ptr + direction_num * i * state_offset;
      auto h_t_grad = last_h_grad_ptr + direction_num * i * state_offset;
      auto c_t_grad = last_c_grad_ptr + direction_num * i * state_offset;

      if (is_bidirec) {
        auto bw_x_grad = parameter_lists_grad[i][4];
        auto bw_h_grad = parameter_lists_grad[i][5];
        auto bb_x_grad = parameter_lists_grad[i][6];
        auto bb_h_grad = parameter_lists_grad[i][7];

        int r = xpu::bilstm_grad<T, T, int16_t>(
            dev_ctx.x_context(), (const T*)layer_input, (const T*)h_0,
            (const T*)c_0, (const T*)w_x, (const T*)w_h, (const T*)bw_x,
            (const T*)bw_h, (const T*)layer_output, (const T*)cur_input_ptr,
            (const T*)h_t_grad, (const T*)c_t_grad,
            reinterpret_cast<T*>(cur_output_ptr),
            reinterpret_cast<T*>(h_0_grad), reinterpret_cast<T*>(c_0_grad),
            w_x_grad, w_h_grad, b_x_grad, b_h_grad, bw_x_grad, bw_h_grad,
            bb_x_grad, bb_h_grad, batch_size, cur_xdim, hidden_size, seq_len,
            seq_len_tensor, nullptr, nullptr, nullptr, nullptr, nullptr,
            nullptr, i_f_g_o, c);

        PADDLE_ENFORCE_XDNN_SUCCESS(r, "bilstm_grad");
      } else {
        int r = xpu::lstm_grad<T, T, int16_t>(
            dev_ctx.x_context(), (const T*)layer_input, (const T*)h_0,
            (const T*)c_0, (const T*)w_x, (const T*)w_h, (const T*)layer_output,
            (const T*)cur_input_ptr, (const T*)h_t_grad, (const T*)c_t_grad,
            reinterpret_cast<T*>(cur_output_ptr),
            reinterpret_cast<T*>(h_0_grad), reinterpret_cast<T*>(c_0_grad),
            w_x_grad, w_h_grad, b_x_grad, b_h_grad, batch_size, cur_xdim,
            hidden_size, seq_len, seq_len_tensor, nullptr, nullptr, nullptr,
            nullptr, i_f_g_o, c);

        PADDLE_ENFORCE_XDNN_SUCCESS(r, "lstm_grad");
      }
    }
463 464 465 466 467 468 469 470 471 472 473 474 475
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
    rnn, ops::RnnXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    rnn_grad, ops::RnnXPUGradKernel<paddle::platform::XPUDeviceContext, float>);

#endif  // PADDLE_WITH_XPU