/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PADDLE_WITH_XPU #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/utils.h" #include "paddle/fluid/platform/device/device_wrapper.h" #include "paddle/fluid/platform/device/xpu/xpu_header.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using DDim = framework::DDim; using TensorList = std::vector; template void reset_parameter_vector(const std::vector& raw_params_vec, const int& num_layers, const bool& is_bidirec, std::vector>* params_vec) { // the parameter raw seuquence is [FWhi, FWhh, BWhi, BWhh] * num_layers // + [FBhi, FBhh, BBhi, BBhh] * num_layers, we will reset the parameter to // ([FWhi, FWhh, FBhi, FBhh] + [BWhi, BWhh, BBhi, BBhh]) * num_layers const int& direction_num = is_bidirec ? 2 : 1; const int& layer_weight_size = 4 * direction_num; const int& all_weight_size = num_layers * layer_weight_size; const int& bias_start_idx = all_weight_size / 2; for (int i = 0; i < num_layers; i++) { params_vec->at(i).resize(layer_weight_size); for (int j = 0; j < layer_weight_size; j++) { int k = j % 4; const int& section = j / 4; int tensor_idx = i * 2 * direction_num + section * 2 + k % 2; if (k >= 2) { tensor_idx += bias_start_idx; } using remove_cv_t = typename std::remove_cv::type; params_vec->at(i)[j] = raw_params_vec[tensor_idx]->template data(); } } } template class RnnXPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { // Input auto* input = ctx.Input("Input"); auto pre_state = ctx.MultiInput("PreState"); auto weight_list = ctx.MultiInput("WeightList"); bool has_seq_length = ctx.HasInput("SequenceLength"); // Output auto state = ctx.MultiOutput("State"); auto* output = ctx.Output("Out"); auto* dropout_mask = ctx.Output("DropoutState"); auto* reserve_data = ctx.Output("Reserve"); // Attrbutes const int& num_layers = ctx.Attr("num_layers"); const bool& is_bidirec = ctx.Attr("is_bidirec"); const int& hidden_size = ctx.Attr("hidden_size"); const std::string& mode = ctx.Attr("mode"); const Tensor* sequence_length = nullptr; if (has_seq_length) { sequence_length = ctx.Input("SequenceLength"); } if (dropout_mask->IsInitialized()) { if (dropout_mask->numel() != output->numel()) dropout_mask->clear(); } dropout_mask->mutable_data(output->dims(), ctx.GetPlace()); auto& dev_ctx = ctx.template device_context(); phi::funcs::SetConstant ones; ones(dev_ctx, dropout_mask, static_cast(1)); PADDLE_ENFORCE_EQ( mode, "LSTM", platform::errors::InvalidArgument( "XPU only support LSTM mode now, current mode is %s", mode)); auto init_h = pre_state[0]; auto init_c = pre_state[1]; auto last_h = state[0]; auto last_c = state[1]; // check shape const int& seq_len = input->dims()[0]; // time_step const int& batch_size = input->dims()[1]; const int& input_dim = input->dims()[2]; const int& direction_num = is_bidirec ? 2 : 1; PADDLE_ENFORCE_EQ( init_h->dims()[0], num_layers * direction_num, platform::errors::InvalidArgument("The num_layers of in RNN layer must" " be the same as first dim of init " "hidden, but received num_layers:%d," " dim:%d", num_layers, init_h->dims()[0])); PADDLE_ENFORCE_EQ( init_c->dims()[0], num_layers * direction_num, platform::errors::InvalidArgument( "The num_layers of in RNN layer must" " be the same as first dim of cell state hidden, but received" " num_layers:%d, dim:%d", num_layers, init_c->dims()[0])); // weightlist std::vector> parameter_lists; parameter_lists.resize(num_layers); reset_parameter_vector(weight_list, num_layers, is_bidirec, ¶meter_lists); // init the output and allocate the memory output->mutable_data(ctx.GetPlace()); last_h->mutable_data(ctx.GetPlace()); last_c->mutable_data(ctx.GetPlace()); int gate_num = 4; int hidden_data_idx = (num_layers - 1); hidden_data_idx += (gate_num + 1) * num_layers; const int& block_size = direction_num * seq_len * batch_size * hidden_size; reserve_data->Resize({hidden_data_idx, block_size}); reserve_data->mutable_data(ctx.GetPlace()); // get ptr from tensor auto x = input->data(); auto init_h_ptr = init_h->data(); auto init_c_ptr = init_c->data(); auto y = output->data(); auto last_h_ptr = last_h->data(); auto last_c_ptr = last_c->data(); auto i_f_g_o_ptr = reserve_data->data(); auto c_ptr = i_f_g_o_ptr + num_layers * block_size * 4; // 4 for i_f_g_o offset auto hidden_data_ptr = c_ptr + num_layers * block_size * 1; // 1 for c offset std::vector seq_len_tensor(batch_size, seq_len); if (has_seq_length) { seq_len_tensor = operators::GetDataFromTensor(sequence_length); } int state_offset = pre_state[0]->dims()[1] * pre_state[0]->dims()[2]; const T* cur_input_ptr = nullptr; int cur_xdim = -1; T* cur_output_ptr = y; for (int i = 0; i < num_layers; i++) { auto i_f_g_o = i_f_g_o_ptr + i * block_size * 4; auto c = c_ptr + i * block_size; cur_output_ptr = y; if (i < num_layers - 1 && num_layers > 1) { cur_output_ptr = hidden_data_ptr + i * block_size; } if (i == 0) { cur_input_ptr = x; cur_xdim = input_dim; } else { cur_input_ptr = hidden_data_ptr + (i - 1) * block_size; cur_xdim = is_bidirec ? 2 * hidden_size : hidden_size; } auto h_0 = init_h_ptr + direction_num * i * state_offset; auto c_0 = init_c_ptr + direction_num * i * state_offset; auto last_h = last_h_ptr + direction_num * i * state_offset; auto last_c = last_c_ptr + direction_num * i * state_offset; auto w_x = parameter_lists[i][0]; auto w_h = parameter_lists[i][1]; auto b_x = parameter_lists[i][2]; auto b_h = parameter_lists[i][3]; if (is_bidirec) { auto bw_x = parameter_lists[i][4]; auto bw_h = parameter_lists[i][5]; auto bb_x = parameter_lists[i][6]; auto bb_h = parameter_lists[i][7]; int r = xpu::bilstm_train( dev_ctx.x_context(), (const T*)cur_input_ptr, (const T*)h_0, (const T*)c_0, (const T*)w_x, (const T*)w_h, (const T*)b_x, (const T*)b_h, (const T*)bw_x, (const T*)bw_h, (const T*)bb_x, (const T*)bb_h, reinterpret_cast(cur_output_ptr), reinterpret_cast(last_h), reinterpret_cast(last_c), batch_size, cur_xdim, hidden_size, seq_len, seq_len_tensor, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, reinterpret_cast(i_f_g_o), reinterpret_cast(c)); PADDLE_ENFORCE_XDNN_SUCCESS(r, "bilstm_train"); } else { int r = xpu::lstm_train( dev_ctx.x_context(), (const T*)cur_input_ptr, (const T*)h_0, (const T*)c_0, (const T*)w_x, (const T*)w_h, (const T*)b_x, (const T*)b_h, reinterpret_cast(cur_output_ptr), reinterpret_cast(last_h), reinterpret_cast(last_c), batch_size, cur_xdim, hidden_size, seq_len, seq_len_tensor, nullptr, nullptr, nullptr, nullptr, reinterpret_cast(i_f_g_o), reinterpret_cast(c), xpu::Activation_t::TANH, xpu::Activation_t::SIGMOID); PADDLE_ENFORCE_XDNN_SUCCESS(r, "lstm_train"); } } } }; template class RnnXPUGradKernel : public framework::OpKernel { using XPUTyp = typename XPUTypeTrait::Type; public: void Compute(const framework::ExecutionContext& ctx) const override { // get the tensor pointer for the input auto* input = ctx.Input("Input"); auto pre_state = ctx.MultiInput("PreState"); auto weight_list = ctx.MultiInput("WeightList"); auto* output = ctx.Input("Out"); auto* reserve_data = ctx.Input("Reserve"); const int& num_layers = ctx.Attr("num_layers"); const bool& is_bidirec = ctx.Attr("is_bidirec"); const float& dropout_prob = ctx.Attr("dropout_prob"); const int& hidden_size = ctx.Attr("hidden_size"); const std::string& mode = ctx.Attr("mode"); bool has_seq_length = ctx.HasInput("SequenceLength"); const Tensor* sequence_length = nullptr; if (has_seq_length) { sequence_length = ctx.Input("SequenceLength"); } PADDLE_ENFORCE_EQ( mode, "LSTM", platform::errors::InvalidArgument( "XPU only support LSTM mode now, current mode is %s", mode)); auto init_h = pre_state[0]; auto init_c = pre_state[1]; auto output_grad = ctx.Input(framework::GradVarName("Out")); auto state_grad = ctx.MultiInput(framework::GradVarName("State")); auto last_h_grad = state_grad[0]; auto last_c_grad = state_grad[1]; // get the tensor pointer for the output auto* input_grad = ctx.Output(framework::GradVarName("Input")); auto weight_grad_list = ctx.MultiOutput( framework::GradVarName("WeightList")); auto pre_state_grad = ctx.MultiOutput(framework::GradVarName("PreState")); Tensor* init_h_grad = nullptr; Tensor* init_c_grad = nullptr; if (pre_state_grad.size() > 0) { // has gradient init_h_grad = pre_state_grad[0]; init_c_grad = pre_state_grad[1]; } // check shape const int& seq_len = input->dims()[0]; const int& batch_size = input->dims()[1]; const int& input_dim = input->dims()[2]; const int& direction_num = is_bidirec ? 2 : 1; PADDLE_ENFORCE_EQ( init_h->dims()[0], num_layers * direction_num, platform::errors::InvalidArgument("The num_layers of in RNN layer must" " be the same as first dim of init " "hidden, but received num_layers:%d," " dim:%d", num_layers, init_h->dims()[0])); PADDLE_ENFORCE_EQ( init_c->dims()[0], num_layers * direction_num, platform::errors::InvalidArgument( "The num_layers of in RNN layer must" " be the same as first dim of cell state hidden, but received" " num_layers:%d, dim:%d", num_layers, init_c->dims()[0])); std::vector> parameter_lists; parameter_lists.resize(num_layers); reset_parameter_vector(weight_list, num_layers, is_bidirec, ¶meter_lists); for (unsigned int i = 0; i < weight_grad_list.size(); ++i) { weight_grad_list[i]->mutable_data(ctx.GetPlace()); } std::vector> parameter_lists_grad; parameter_lists_grad.resize(num_layers); reset_parameter_vector(weight_grad_list, num_layers, is_bidirec, ¶meter_lists_grad); // allocate the memory and initization the input_grad input_grad->mutable_data(input->dims(), ctx.GetPlace()); auto& dev_ctx = ctx.template device_context(); phi::funcs::SetConstant zero; zero(dev_ctx, input_grad, static_cast(0.0)); Tensor a, b; Tensor* dynamic_grad_pre_h = &a; Tensor* dynamic_grad_pre_c = &b; if (init_h_grad) { init_h_grad->mutable_data(last_h_grad->dims(), ctx.GetPlace()); zero(dev_ctx, init_h_grad, static_cast(0.0)); } else { dynamic_grad_pre_h->Resize(last_h_grad->dims()); dynamic_grad_pre_h->mutable_data(ctx.GetPlace()); zero(dev_ctx, dynamic_grad_pre_h, static_cast(0.0)); init_h_grad = dynamic_grad_pre_h; } if (init_c_grad) { init_c_grad->mutable_data(last_c_grad->dims(), ctx.GetPlace()); } else { dynamic_grad_pre_c->Resize(last_h_grad->dims()); dynamic_grad_pre_c->mutable_data(ctx.GetPlace()); init_c_grad = dynamic_grad_pre_c; } Tensor temp_input_grad_1, temp_input_grad_2; T* input_grad_1_ptr = nullptr; T* input_grad_2_ptr = nullptr; if (num_layers >= 2) { temp_input_grad_1.Resize(output_grad->dims()); input_grad_1_ptr = temp_input_grad_1.mutable_data(ctx.GetPlace()); } if (num_layers >= 3) { temp_input_grad_2.Resize(output_grad->dims()); input_grad_2_ptr = temp_input_grad_2.mutable_data(ctx.GetPlace()); } // get ptr from tensor auto x = input->data(); auto init_h_ptr = init_h->data(); auto init_c_ptr = init_c->data(); auto y = output->data(); auto y_grad = output_grad->data(); auto last_h_grad_ptr = last_h_grad->data(); auto last_c_grad_ptr = last_c_grad->data(); auto x_grad = input_grad->data(); auto init_h_grad_ptr = init_h_grad->data(); auto init_c_grad_ptr = init_c_grad->data(); const int& block_size = direction_num * seq_len * batch_size * hidden_size; auto i_f_g_o_ptr = reserve_data->data(); auto c_ptr = i_f_g_o_ptr + num_layers * block_size * 4; auto hidden_data_ptr = c_ptr + num_layers * block_size * 1; int state_offset = pre_state[0]->dims()[1] * pre_state[0]->dims()[2]; std::vector seq_len_tensor(batch_size, seq_len); if (has_seq_length) { seq_len_tensor = operators::GetDataFromTensor(sequence_length); } for (int i = num_layers - 1; i >= 0; --i) { // the layer input output had saved, just use the data auto w_x = parameter_lists[i][0]; auto w_h = parameter_lists[i][1]; auto bw_x = parameter_lists[i][4]; auto bw_h = parameter_lists[i][5]; auto i_f_g_o = i_f_g_o_ptr + i * block_size * 4; auto c = c_ptr + i * block_size; Tensor layer_input_t; auto layer_input = x; if (i > 0) { layer_input_t.Resize(output->dims()); layer_input = layer_input_t.mutable_data(ctx.GetPlace()); float scale = static_cast(1.0f - dropout_prob); auto hidden_data = hidden_data_ptr + (i - 1) * block_size; int r = xpu::scale(dev_ctx.x_context(), reinterpret_cast(hidden_data), const_cast(layer_input), output->numel(), false, scale, 0.0f); PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale"); } else { layer_input = x; } auto layer_output = y; if (i == num_layers - 1) { layer_output = y; } else { layer_output = hidden_data_ptr + i * block_size; } const T* cur_input_ptr = nullptr; if (i == num_layers - 1) { cur_input_ptr = y_grad; } else if (i % 2 != 0) { cur_input_ptr = input_grad_2_ptr; } else { cur_input_ptr = input_grad_1_ptr; } T* cur_output_ptr = nullptr; int cur_xdim = -1; if (i == 0) { cur_output_ptr = x_grad; cur_xdim = input_dim; } else if (i % 2 != 0) { cur_output_ptr = input_grad_1_ptr; cur_xdim = is_bidirec ? 2 * hidden_size : hidden_size; } else { cur_output_ptr = input_grad_2_ptr; cur_xdim = is_bidirec ? 2 * hidden_size : hidden_size; } auto w_x_grad = parameter_lists_grad[i][0]; auto w_h_grad = parameter_lists_grad[i][1]; auto b_x_grad = parameter_lists_grad[i][2]; auto b_h_grad = parameter_lists_grad[i][3]; auto h_0 = init_h_ptr + direction_num * i * state_offset; auto c_0 = init_c_ptr + direction_num * i * state_offset; auto h_0_grad = init_h_grad_ptr + direction_num * i * state_offset; auto c_0_grad = init_c_grad_ptr + direction_num * i * state_offset; auto h_t_grad = last_h_grad_ptr + direction_num * i * state_offset; auto c_t_grad = last_c_grad_ptr + direction_num * i * state_offset; if (is_bidirec) { auto bw_x_grad = parameter_lists_grad[i][4]; auto bw_h_grad = parameter_lists_grad[i][5]; auto bb_x_grad = parameter_lists_grad[i][6]; auto bb_h_grad = parameter_lists_grad[i][7]; int r = xpu::bilstm_grad( dev_ctx.x_context(), (const T*)layer_input, (const T*)h_0, (const T*)c_0, (const T*)w_x, (const T*)w_h, (const T*)bw_x, (const T*)bw_h, (const T*)layer_output, (const T*)cur_input_ptr, (const T*)h_t_grad, (const T*)c_t_grad, reinterpret_cast(cur_output_ptr), reinterpret_cast(h_0_grad), reinterpret_cast(c_0_grad), w_x_grad, w_h_grad, b_x_grad, b_h_grad, bw_x_grad, bw_h_grad, bb_x_grad, bb_h_grad, batch_size, cur_xdim, hidden_size, seq_len, seq_len_tensor, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, i_f_g_o, c); PADDLE_ENFORCE_XDNN_SUCCESS(r, "bilstm_grad"); } else { int r = xpu::lstm_grad( dev_ctx.x_context(), (const T*)layer_input, (const T*)h_0, (const T*)c_0, (const T*)w_x, (const T*)w_h, (const T*)layer_output, (const T*)cur_input_ptr, (const T*)h_t_grad, (const T*)c_t_grad, reinterpret_cast(cur_output_ptr), reinterpret_cast(h_0_grad), reinterpret_cast(c_0_grad), w_x_grad, w_h_grad, b_x_grad, b_h_grad, batch_size, cur_xdim, hidden_size, seq_len, seq_len_tensor, nullptr, nullptr, nullptr, nullptr, i_f_g_o, c); PADDLE_ENFORCE_XDNN_SUCCESS(r, "lstm_grad"); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_XPU_KERNEL( rnn, ops::RnnXPUKernel); REGISTER_OP_XPU_KERNEL( rnn_grad, ops::RnnXPUGradKernel); #endif // PADDLE_WITH_XPU