batch_norm_op.cc 21.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
S
Siddharth Goyal 已提交
16
#include <string>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/data_layout.h"
18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace operators {

class BatchNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
    PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
    PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");
    PADDLE_ENFORCE(ctx->HasOutput("MeanOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), "");

    // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
    PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                      "Mean and MeanOut should share the same memory");
    PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0],
                      ctx->Outputs("VarianceOut")[0],
                      "Variance and VarianceOut should share the same memory");

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
49 50
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
51 52 53 54

    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "Input X must have 2 to 5 dimensions.");

Y
Yang Yu 已提交
55
    const int64_t C =
Q
QI JUN 已提交
56 57
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
58 59 60 61 62 63 64 65 66 67 68

    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], C);

    ctx->SetOutputDim("Y", x_dims);
    ctx->SetOutputDim("MeanOut", {C});
    ctx->SetOutputDim("VarianceOut", {C});
    ctx->SetOutputDim("SavedMean", {C});
    ctx->SetOutputDim("SavedVariance", {C});
Y
Yang Yu 已提交
69
    ctx->ShareLoD("X", "Y");
Q
Qiao Longfei 已提交
70
  }
K
Kexin Zhao 已提交
71 72 73

 protected:
  framework::OpKernelType GetExpectedKernelType(
K
update  
Kexin Zhao 已提交
74
      const framework::ExecutionContext &ctx) const override {
K
Kexin Zhao 已提交
75 76
    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("X")->type());
D
dzhwinter 已提交
77 78 79
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
K
Kexin Zhao 已提交
80
    auto bn_param_type = framework::proto::VarType::FP32;
D
dzhwinter 已提交
81 82 83
    if (input_data_type == framework::proto::VarType::FP64) {
      bn_param_type = framework::proto::VarType::FP64;
    }
K
Kexin Zhao 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Scale")->type()),
                      "Scale input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Bias")->type()),
                      "Bias input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Mean")->type()),
                      "Mean input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type, framework::ToDataType(
                                         ctx.Input<Tensor>("Variance")->type()),
                      "Variance input should be of float type");
96

M
mozga-intel 已提交
97
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
98
    framework::LibraryType library = framework::LibraryType::kPlain;
M
mozga-intel 已提交
99
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
100
#ifdef PADDLE_WITH_MKLDNN
101
    if (library == framework::LibraryType::kPlain &&
102
        platform::CanMKLDNNBeUsed(ctx)) {
103
      library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
104
      layout = framework::DataLayout::kMKLDNN;
105 106
    }
#endif
107

108
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
109
                                   library);
K
Kexin Zhao 已提交
110
  }
Q
Qiao Longfei 已提交
111 112 113 114
};

class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
115
  void Make() override {
116 117 118 119
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
120
    AddAttr<float>("momentum", "").SetDefault(0.9);
C
chengduoZH 已提交
121 122 123 124 125 126
    AddAttr<float>("epsilon", "")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
Q
QI JUN 已提交
127
    AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
Q
Qiao Longfei 已提交
128 129 130
    AddInput("X", "The input tensor");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C "
131
             "that is applied to the output");
Q
Qiao Longfei 已提交
132 133
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
134
             "that is applied to the output");
Q
Qiao Longfei 已提交
135
    AddInput("Mean",
136
             "The global mean (for training) or "
Q
Qiao Longfei 已提交
137 138 139
             "estimated mean (for testing)");
    AddInput("Variance",
             "The global variance (for training) "
140
             "or estimated Variance (for testing)");
141
    AddOutput("Y", "result after normalization");
Q
Qiao Longfei 已提交
142 143
    AddOutput("MeanOut",
              "Share memory with Mean. "
144
              "Store the global mean when training");
Q
Qiao Longfei 已提交
145 146
    AddOutput("VarianceOut",
              "Share memory with Variance. "
147
              "Store the global Variance when training");
Q
Qiao Longfei 已提交
148 149
    AddOutput("SavedMean",
              "Mean of the current mini batch, "
Q
Qiao Longfei 已提交
150 151
              "will apply to output when training")
        .AsIntermediate();
Q
Qiao Longfei 已提交
152 153
    AddOutput("SavedVariance",
              "Variance of the current mini batch, "
Q
Qiao Longfei 已提交
154 155
              "will apply to output when training")
        .AsIntermediate();
156 157
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
158 159 160
        .SetDefault(false);
    AddAttr<bool>("fuse_with_relu",
                  "(bool, default false) Only used in mkldnn kernel")
161
        .SetDefault(false);
Q
Qiao Longfei 已提交
162
    AddComment(R"DOC(
163
Batch Normalization.
Q
Qiao Longfei 已提交
164

165 166 167 168 169 170
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
171 172 173 174 175

)DOC");
  }
};

C
chengduo 已提交
176 177 178 179 180 181 182 183 184
class BatchNormOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
  }
};

Q
Qiao Longfei 已提交
185
template <typename T>
Q
QI JUN 已提交
186 187
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
188 189 190 191 192
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
Q
QI JUN 已提交
193 194 195
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
196 197 198

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
199 200
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
201 202
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
203 204
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

    if (!is_test) {
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

229 230 231 232 233 234 235 236 237 238 239 240
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
        LOG(WARNING) << "Only 1 element in normalization dimension, "
                     << "we skip the batch norm calculation, let y = x.";
        framework::TensorCopySync(*x, ctx.GetPlace(), y);
        return;
      }

Q
QI JUN 已提交
241 242
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
243 244 245 246 247 248 249 250 251 252 253 254
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
255
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
269
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
      }

      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
    if (is_test) {
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
        is_test ? ctx.Input<Tensor>("Mean")->data<T>()
                : ctx.Output<Tensor>("SavedMean")->data<T>(),
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
307 308
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
309 310 311 312 313 314 315 316
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
317
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
318 319 320 321 322 323 324 325 326
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
327
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    }
  }
};

class BatchNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "");
    PADDLE_ENFORCE(ctx->HasInput("SavedMean"), "");
    PADDLE_ENFORCE(ctx->HasInput("SavedVariance"), "");

    // check output
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Scale")), "");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), "");

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
350 351
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
352
    const int C =
Q
QI JUN 已提交
353 354
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
355 356 357 358 359

    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
  }
Q
Qiao Longfei 已提交
360

Y
Yu Yang 已提交
361
 protected:
362
  framework::OpKernelType GetExpectedKernelType(
Q
Qiao Longfei 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
377

M
mozga-intel 已提交
378
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
379 380 381
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

382
#ifdef PADDLE_WITH_MKLDNN
383
    if (library == framework::LibraryType::kPlain &&
384
        platform::CanMKLDNNBeUsed(ctx)) {
385 386
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
387 388
    }
#endif
389

390 391
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
392
        layout, library);
Q
Qiao Longfei 已提交
393
  }
Q
Qiao Longfei 已提交
394 395 396
};

template <typename T>
Q
QI JUN 已提交
397
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
398 399 400 401 402 403 404 405 406
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
407 408 409
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
410 411 412 413

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
414 415
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
416 417
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
418 419
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    const int sample_size = x->numel() / N / C;

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(saved_mean->data<T>(), C);
    ConstEigenVectorArrayMap<T> inv_var_arr(saved_inv_variance->data<T>(), C);

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    d_scale->mutable_data<T>(ctx.GetPlace());
    d_bias->mutable_data<T>(ctx.GetPlace());

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))

    EigenVectorArrayMap<T> d_bias_arr(d_bias->mutable_data<T>(ctx.GetPlace()),
                                      C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale->mutable_data<T>(ctx.GetPlace()),
                                       C);

    d_bias_arr.setZero();
    d_scale_arr.setZero();

448 449 450 451 452
    if ((N * sample_size) == 1) {
      framework::TensorCopySync(*d_y, ctx.GetPlace(), d_x);
      return;
    }

Q
Qiao Longfei 已提交
453 454
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size);

Q
QI JUN 已提交
455 456
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          d_bias_arr(c) += d_y_arr.col(nc).sum();
          d_scale_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          d_x_arr.col(nc) +=
              scale_inv_var_nhw(c) *
              (d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) -
               (x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) * inv_var_arr(c));
        }
        break;
      }
Q
QI JUN 已提交
479
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

        const auto d_y_row_sum = d_y_arr.rowwise().sum();
        const auto x_minus_mean = x_arr.colwise() - mean_arr;
        const auto d_y_mul_x_minus_mean_row_sum =
            (d_y_arr * x_minus_mean).rowwise().sum();
        const auto inv_var_sqr = inv_var_arr * inv_var_arr;
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          d_bias_arr += d_y_arr.col(nhw);
          d_scale_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
          d_x_arr.col(nhw) +=
              scale_inv_var_nhw *
              (d_y_arr.col(nhw) * N * sample_size - d_y_row_sum -
               x_minus_mean.col(nhw) * inv_var_sqr *
                   d_y_mul_x_minus_mean_row_sum);
        }
        break;
      }
      default:
Q
QI JUN 已提交
504
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
505 506 507 508
    }
  }
};

Y
Yu Yang 已提交
509 510 511 512 513 514 515 516 517 518 519 520
class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
    op->SetType("batch_norm_grad");
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));

    op->SetInput("Scale", Input("Scale"));
521
    op->SetInput("Bias", Input("Bias"));
Y
Yu Yang 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534
    op->SetInput("SavedMean", Output("SavedMean"));
    op->SetInput("SavedVariance", Output("SavedVariance"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Q
Qiao Longfei 已提交
535 536 537 538
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
539
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
C
chengduo 已提交
540
                  ops::BatchNormOpInferVarType, ops::BatchNormGradMaker);
Y
Yu Yang 已提交
541 542
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);

Q
QI JUN 已提交
543
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
544 545
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
546 547
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
548 549
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);