test_distribution_beta.py 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numbers
import unittest

import numpy as np
import paddle
import scipy.stats

21 22 23
import config
from config import ATOL, DEVICES, RTOL
from parameterize import TEST_CASE_NAME, parameterize_cls, place, xrand
24

S
Shijie 已提交
25 26
np.random.seed(2022)

27 28

@place(DEVICES)
29 30 31
@parameterize_cls((TEST_CASE_NAME, 'alpha', 'beta'),
                  [('test-scale', 1.0, 2.0), ('test-tensor', xrand(), xrand()),
                   ('test-broadcast', xrand((2, 1)), xrand((2, 5)))])
32
class TestBeta(unittest.TestCase):
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    def setUp(self):
        # scale no need convert to tensor for scale input unittest
        alpha, beta = self.alpha, self.beta
        if not isinstance(self.alpha, numbers.Real):
            alpha = paddle.to_tensor(self.alpha)
        if not isinstance(self.beta, numbers.Real):
            beta = paddle.to_tensor(self.beta)

        self._paddle_beta = paddle.distribution.Beta(alpha, beta)

    def test_mean(self):
        with paddle.fluid.dygraph.guard(self.place):
            np.testing.assert_allclose(
                self._paddle_beta.mean,
                scipy.stats.beta.mean(self.alpha, self.beta),
                rtol=RTOL.get(str(self._paddle_beta.alpha.numpy().dtype)),
                atol=ATOL.get(str(self._paddle_beta.alpha.numpy().dtype)))

    def test_variance(self):
        with paddle.fluid.dygraph.guard(self.place):
            np.testing.assert_allclose(
                self._paddle_beta.variance,
                scipy.stats.beta.var(self.alpha, self.beta),
                rtol=RTOL.get(str(self._paddle_beta.alpha.numpy().dtype)),
                atol=ATOL.get(str(self._paddle_beta.alpha.numpy().dtype)))

    def test_prob(self):
        value = [np.random.rand(*self._paddle_beta.alpha.shape)]

        for v in value:
            with paddle.fluid.dygraph.guard(self.place):
                np.testing.assert_allclose(
                    self._paddle_beta.prob(paddle.to_tensor(v)),
                    scipy.stats.beta.pdf(v, self.alpha, self.beta),
                    rtol=RTOL.get(str(self._paddle_beta.alpha.numpy().dtype)),
                    atol=ATOL.get(str(self._paddle_beta.alpha.numpy().dtype)))

    def test_log_prob(self):
        value = [np.random.rand(*self._paddle_beta.alpha.shape)]

        for v in value:
            with paddle.fluid.dygraph.guard(self.place):
                np.testing.assert_allclose(
                    self._paddle_beta.log_prob(paddle.to_tensor(v)),
                    scipy.stats.beta.logpdf(v, self.alpha, self.beta),
                    rtol=RTOL.get(str(self._paddle_beta.alpha.numpy().dtype)),
                    atol=ATOL.get(str(self._paddle_beta.alpha.numpy().dtype)))

    def test_entropy(self):
        with paddle.fluid.dygraph.guard(self.place):
            np.testing.assert_allclose(
                self._paddle_beta.entropy(),
                scipy.stats.beta.entropy(self.alpha, self.beta),
                rtol=RTOL.get(str(self._paddle_beta.alpha.numpy().dtype)),
                atol=ATOL.get(str(self._paddle_beta.alpha.numpy().dtype)))

    def test_sample_shape(self):
        cases = [
            {
                'input': [],
                'expect': [] + paddle.squeeze(self._paddle_beta.alpha).shape
            },
            {
                'input': [2, 3],
                'expect': [2, 3] + paddle.squeeze(self._paddle_beta.alpha).shape
            },
        ]
        for case in cases:
            self.assertTrue(
103 104
                self._paddle_beta.sample(case.get('input')).shape == case.get(
                    'expect'))
105 106 107 108


if __name__ == '__main__':
    unittest.main()