# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numbers import unittest import numpy as np import paddle import scipy.stats import config from config import ATOL, DEVICES, RTOL from parameterize import TEST_CASE_NAME, parameterize_cls, place, xrand np.random.seed(2022) @place(DEVICES) @parameterize_cls((TEST_CASE_NAME, 'alpha', 'beta'), [('test-scale', 1.0, 2.0), ('test-tensor', xrand(), xrand()), ('test-broadcast', xrand((2, 1)), xrand((2, 5)))]) class TestBeta(unittest.TestCase): def setUp(self): # scale no need convert to tensor for scale input unittest alpha, beta = self.alpha, self.beta if not isinstance(self.alpha, numbers.Real): alpha = paddle.to_tensor(self.alpha) if not isinstance(self.beta, numbers.Real): beta = paddle.to_tensor(self.beta) self._paddle_beta = paddle.distribution.Beta(alpha, beta) def test_mean(self): with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( self._paddle_beta.mean, scipy.stats.beta.mean(self.alpha, self.beta), rtol=RTOL.get(str(self._paddle_beta.alpha.numpy().dtype)), atol=ATOL.get(str(self._paddle_beta.alpha.numpy().dtype))) def test_variance(self): with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( self._paddle_beta.variance, scipy.stats.beta.var(self.alpha, self.beta), rtol=RTOL.get(str(self._paddle_beta.alpha.numpy().dtype)), atol=ATOL.get(str(self._paddle_beta.alpha.numpy().dtype))) def test_prob(self): value = [np.random.rand(*self._paddle_beta.alpha.shape)] for v in value: with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( self._paddle_beta.prob(paddle.to_tensor(v)), scipy.stats.beta.pdf(v, self.alpha, self.beta), rtol=RTOL.get(str(self._paddle_beta.alpha.numpy().dtype)), atol=ATOL.get(str(self._paddle_beta.alpha.numpy().dtype))) def test_log_prob(self): value = [np.random.rand(*self._paddle_beta.alpha.shape)] for v in value: with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( self._paddle_beta.log_prob(paddle.to_tensor(v)), scipy.stats.beta.logpdf(v, self.alpha, self.beta), rtol=RTOL.get(str(self._paddle_beta.alpha.numpy().dtype)), atol=ATOL.get(str(self._paddle_beta.alpha.numpy().dtype))) def test_entropy(self): with paddle.fluid.dygraph.guard(self.place): np.testing.assert_allclose( self._paddle_beta.entropy(), scipy.stats.beta.entropy(self.alpha, self.beta), rtol=RTOL.get(str(self._paddle_beta.alpha.numpy().dtype)), atol=ATOL.get(str(self._paddle_beta.alpha.numpy().dtype))) def test_sample_shape(self): cases = [ { 'input': [], 'expect': [] + paddle.squeeze(self._paddle_beta.alpha).shape }, { 'input': [2, 3], 'expect': [2, 3] + paddle.squeeze(self._paddle_beta.alpha).shape }, ] for case in cases: self.assertTrue( self._paddle_beta.sample(case.get('input')).shape == case.get( 'expect')) if __name__ == '__main__': unittest.main()