test_op_nn.py 21.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#!/usr/bin/env python3

# Copyright (c) 2021 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
18 19 20 21 22
import unittest

import conv2d_utils
import numpy as np
import pool_utils
23
from cinn import framework
24
from test_utils import SingleOpTester
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

class OpTest_relu(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        return np.maximum(X, np.zeros(X.shape).astype("float32"))

    def test_op(self):
        attrs = framework.NodeAttr()
        self.to_test_op([[32]], [[32]], "relu", attrs)


class OpTest_relu6(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        return np.minimum(
41 42
            np.maximum(X, np.zeros(np.array(X).shape).astype("float32")), 6
        )
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    def test_op(self):
        attrs = framework.NodeAttr()
        self.to_test_op([[32, 32]], [[32, 32]], "relu6", attrs)


class OpTest_conv2d_nchw(SingleOpTester):
    def init_testcase(self):
        self.input_size = [1, 3, 10, 10]
        self.groups = 1
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [2, f_c, 2, 2]
        assert np.mod(self.filter_size[0], self.groups) == 0
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [2, 2]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
69 70 71
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
72 73 74

    def test_op(self):
        self.init_testcase()
75 76 77 78 79 80 81 82
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103


class OpTest_conv2d_nchw_1(SingleOpTester):
    def init_testcase(self):
        self.input_size = [1, 3, 224, 224]
        self.groups = 1
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [64, f_c, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [3, 3]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
104 105 106
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
107 108 109

    def test_op(self):
        self.init_testcase()
110 111 112 113 114 115 116 117
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138


class OpTest_conv2d_nchw_group(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 8, 10, 10]
        self.groups = 4
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
139 140 141
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
142 143 144

    def test_op(self):
        self.init_testcase()
145 146 147 148 149 150 151 152
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173


class OpTest_conv2d_nchw_depthwise(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 8, 10, 10]
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
174 175 176
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
177 178 179

    def test_op(self):
        self.init_testcase()
180 181 182 183 184 185 186 187
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208


class OpTest_conv2d_nhwc_group(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 10, 10, 8]
        self.groups = 4
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NHWC"
        self.attrs = framework.NodeAttr()
        self.padding = [2, 2]
        self.stride = [2, 2]
        self.dilation = [2, 2]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
209 210 211
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
212 213 214

    def test_op(self):
        self.init_testcase()
215 216 217 218 219 220 221 222
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243


class OpTest_conv2d_nhwc_depthwise(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 10, 10, 8]
        self.groups = 8
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NHWC"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
244 245 246
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
247 248 249

    def test_op(self):
        self.init_testcase()
250 251 252 253 254 255 256 257
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279


# test channel multiplier format
class OpTest_depthwise_conv2d_nchw(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 8, 10, 10]
        self.groups = self.input_size[1]
        assert np.mod(self.input_size[1], self.groups) == 0
        channel_multiplier = 1
        self.filter_size = [self.input_size[1], channel_multiplier, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
280 281 282
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, True
        )
283 284 285

    def test_op(self):
        self.init_testcase()
286 287 288 289 290 291 292 293
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "depthwise_conv2d",
            self.attrs,
            0,
            True,
        )
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315


# test channel multiplier format
class OpTest_depthwise_conv2d_nhwc(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 10, 10, 8]
        self.groups = self.input_size[3]
        assert np.mod(self.input_size[3], self.groups) == 0
        channel_multiplier = 4
        self.filter_size = [self.input_size[3], channel_multiplier, 7, 7]
        self.data_format = "NHWC"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
316 317 318
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, True
        )
319 320 321

    def test_op(self):
        self.init_testcase()
322 323 324 325 326 327 328 329
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "depthwise_conv2d",
            self.attrs,
            0,
            True,
        )
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503


class OpTest_pool1d(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2])
    attrs.set_attr("stride_size", [2])
    attrs.set_attr("padding_size", [1, 1])
    attrs.set_attr("pool_type", "max")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool1d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8]
        self.to_test_op([input_shape], None, "pool1d", self.attrs)


class OpTest_pool1d_1(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2])
    attrs.set_attr("stride_size", [2])
    attrs.set_attr("padding_size", [2, 3])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool1d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8]
        self.to_test_op([input_shape], None, "pool1d", self.attrs)


class OpTest_pool1d_2(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2])
    attrs.set_attr("stride_size", [3])
    attrs.set_attr("padding_size", [4, 5])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", True)
    attrs.set_attr("exclusive", False)
    attrs.set_attr("data_format", "NWC")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool1d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 8, 3]
        self.to_test_op([input_shape], None, "pool1d", self.attrs)


class OpTest_pool2d(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2])
    attrs.set_attr("stride_size", [2, 2])
    attrs.set_attr("padding_size", [1, 1, 1, 1])
    attrs.set_attr("pool_type", "max")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCHW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool2d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8, 8]
        self.to_test_op([input_shape], None, "pool2d", self.attrs)


class OpTest_pool2d_1(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2])
    attrs.set_attr("stride_size", [2, 2])
    attrs.set_attr("padding_size", [2, 3, 4, 5])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCHW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool2d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8, 8]
        self.to_test_op([input_shape], None, "pool2d", self.attrs)


class OpTest_pool2d_2(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2])
    attrs.set_attr("stride_size", [3, 3])
    attrs.set_attr("padding_size", [2, 3, 4, 5])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", True)
    attrs.set_attr("exclusive", False)
    attrs.set_attr("data_format", "NHWC")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool2d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 8, 8, 3]
        self.to_test_op([input_shape], None, "pool2d", self.attrs)


# The following test is temporarily broken

# class OpTest_pool3d(SingleOpTester):
#     attrs = framework.NodeAttr()
#     attrs.attr_store = {
#         "kernel_size": [2, 2, 2],
#         "stride_size": [2, 2, 2],
#         "padding_size": [1, 2, 3, 4, 5, 6],
#         "pool_type": "max",
#         "ceil_mode": False,
#         "exclusive": True,
#         "data_format": "NCDHW"
#     }

#     def create_target_data(self, inputs_data, attrs):
#         return pool_utils.pool3d(inputs_data[0], self.attrs)

#     def test_op(self):
#         input_shape = [2, 3, 8, 8, 8]
#         self.to_test_op([input_shape], None, "pool3d", self.attrs)


class OpTest_pool3d_1(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2, 2])
    attrs.set_attr("stride_size", [2, 2, 2])
    attrs.set_attr("padding_size", [1, 1, 1, 1, 1, 1])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCDHW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool3d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8, 8, 8]
        self.to_test_op([input_shape], None, "pool3d", self.attrs)


class OpTest_pool3d_2(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2, 2])
    attrs.set_attr("stride_size", [2, 2, 2])
    attrs.set_attr("padding_size", [1, 2, 3, 4, 5, 6])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", True)
    attrs.set_attr("exclusive", False)
    attrs.set_attr("data_format", "NDHWC")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool3d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 8, 8, 8, 3]
        self.to_test_op([input_shape], None, "pool3d", self.attrs)


class OpTest_batchnorm(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X, Scale, Bias, Mean, Variance] = inputs_data
        c = X.shape[1]
        for i in range(0, c):
            X[:, i, :, :] = (X[:, i, :, :] - Mean[i]) / math.sqrt(
504 505
                Variance[i] + 0.00001
            ) * Scale[i] + Bias[i]
506 507 508 509
        return X

    def test_op(self):
        attrs = framework.NodeAttr()
510 511 512 513 514 515
        self.to_test_op(
            [[1, 64, 112, 112], [64], [64], [64], [64]],
            [[1, 64, 112, 112]],
            "batch_norm",
            attrs,
        )
516 517 518 519 520 521 522


class OpTest_softmax_0(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = np.zeros(X.shape).astype("float32")
        for i in range(0, Y.shape[1]):
523 524 525 526
            Y[:, i, :] = (
                np.exp(X[:, i, :])
                / np.sum(np.exp(X), axis=1, keepdims=True)[:, 0, :]
            )
527 528 529 530 531
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axis", 1)
532 533 534 535 536 537 538
        self.to_test_op(
            [[12, 224, 224]],
            [[12, 224, 224], [12, 224, 224]],
            "softmax",
            attrs,
            0,
        )
539 540 541 542 543 544 545


class OpTest_softmax_1(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = np.zeros(X.shape).astype("float32")
        for i in range(0, Y.shape[2]):
546 547 548 549
            Y[:, :, i] = (
                np.exp(X[:, :, i])
                / np.sum(np.exp(X), axis=2, keepdims=True)[:, :, 0]
            )
550 551 552 553 554
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axis", -1)
555 556 557 558 559 560 561
        self.to_test_op(
            [[12, 224, 224]],
            [[12, 224, 224], [12, 224, 224]],
            "softmax",
            attrs,
            0,
        )
562 563 564 565 566 567 568


class OpTest_softmax_2(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = np.zeros(X.shape).astype("float32")
        for i in range(0, Y.shape[0]):
569 570 571 572
            Y[i, :, :] = (
                np.exp(X[i, :, :])
                / np.sum(np.exp(X), axis=0, keepdims=True)[0, :, :]
            )
573 574 575 576 577
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axis", 0)
578 579 580 581 582 583 584
        self.to_test_op(
            [[12, 224, 224]],
            [[12, 224, 224], [12, 224, 224]],
            "softmax",
            attrs,
            0,
        )
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634


class OpTest_sigmoid(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        x = np.array(inputs_data[0])
        y = 1 / (1 + np.exp(-x))
        return y

    def test_op(self):
        attrs = framework.NodeAttr()
        self.to_test_op([[3, 224, 224]], [[3, 224, 224]], "sigmoid", attrs)


class OpTest_slice_0(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = X[:, 0:2, 2:4, :]
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axes", [0, 1, 2])
        attrs.set_attr("starts", [-3, 0, 2])
        attrs.set_attr("ends", [3, 2, 4])
        self.to_test_op([[3, 4, 5, 6]], [[3, 2, 2, 6]], "slice", attrs)


class OpTest_slice_1(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = X[:, 0:3, 1:2, 2:4]
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axes", [1, 2, 3])
        attrs.set_attr("starts", [0, 1, 2])
        attrs.set_attr("ends", [3, 2, 4])
        self.to_test_op([[3, 4, 5, 6]], [[3, 3, 1, 2]], "slice", attrs)


class OpTest_dropout_infer_0(SingleOpTester):
    def init_testcase(self):
        self.attrs = framework.NodeAttr()
        self.attrs.set_attr("dropout_prob", 0.2)
        self.attrs.set_attr("dropout_implementation", "downgrade_in_infer")

    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        assert "dropout_implementation" in self.attrs.attr_store
635 636 637 638
        if (
            self.attrs.attr_store["dropout_implementation"]
            == "downgrade_in_infer"
        ):
639 640 641 642 643 644
            return X * (1 - self.attrs.attr_store["dropout_prob"])
        else:
            return X

    def test_op(self):
        self.init_testcase()
645 646 647
        self.to_test_op(
            [[2, 1280, 2, 2]], [[2, 1280, 2, 2]], "dropout_infer", self.attrs
        )
648 649 650 651 652 653 654 655 656 657 658


class OpTest_dropout_infer_1(SingleOpTester):
    def init_testcase(self):
        self.attrs = framework.NodeAttr()
        self.attrs.set_attr("dropout_prob", 0.2)
        self.attrs.set_attr("dropout_implementation", "upscale_in_train")

    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        assert "dropout_implementation" in self.attrs.attr_store
659 660 661 662
        if (
            self.attrs.attr_store["dropout_implementation"]
            == "downgrade_in_infer"
        ):
663 664 665 666 667 668
            return X * (1 - self.attrs.attr_store["dropout_prob"])
        else:
            return X

    def test_op(self):
        self.init_testcase()
669 670 671
        self.to_test_op(
            [[2, 1280, 2, 2]], [[2, 1280, 2, 2]], "dropout_infer", self.attrs
        )
672 673 674 675


if __name__ == "__main__":
    unittest.main()