test_op_nn.py 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#!/usr/bin/env python3

# Copyright (c) 2021 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle as paddle
import numpy as np
import unittest
import math
import cinn
from cinn import frontend
from cinn import runtime
from cinn import lang
from cinn import framework
from cinn import ir
from cinn import common
from cinn.poly import create_stages
import logging
from test_utils import SingleOpTester
import pool_utils
import conv2d_utils


class OpTest_relu(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        return np.maximum(X, np.zeros(X.shape).astype("float32"))

    def test_op(self):
        attrs = framework.NodeAttr()
        self.to_test_op([[32]], [[32]], "relu", attrs)


class OpTest_relu6(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        return np.minimum(
49 50
            np.maximum(X, np.zeros(np.array(X).shape).astype("float32")), 6
        )
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

    def test_op(self):
        attrs = framework.NodeAttr()
        self.to_test_op([[32, 32]], [[32, 32]], "relu6", attrs)


class OpTest_conv2d_nchw(SingleOpTester):
    def init_testcase(self):
        self.input_size = [1, 3, 10, 10]
        self.groups = 1
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [2, f_c, 2, 2]
        assert np.mod(self.filter_size[0], self.groups) == 0
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [2, 2]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
77 78 79
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
80 81 82

    def test_op(self):
        self.init_testcase()
83 84 85 86 87 88 89 90
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111


class OpTest_conv2d_nchw_1(SingleOpTester):
    def init_testcase(self):
        self.input_size = [1, 3, 224, 224]
        self.groups = 1
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [64, f_c, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [3, 3]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
112 113 114
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
115 116 117

    def test_op(self):
        self.init_testcase()
118 119 120 121 122 123 124 125
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146


class OpTest_conv2d_nchw_group(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 8, 10, 10]
        self.groups = 4
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
147 148 149
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
150 151 152

    def test_op(self):
        self.init_testcase()
153 154 155 156 157 158 159 160
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181


class OpTest_conv2d_nchw_depthwise(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 8, 10, 10]
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
182 183 184
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
185 186 187

    def test_op(self):
        self.init_testcase()
188 189 190 191 192 193 194 195
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216


class OpTest_conv2d_nhwc_group(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 10, 10, 8]
        self.groups = 4
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NHWC"
        self.attrs = framework.NodeAttr()
        self.padding = [2, 2]
        self.stride = [2, 2]
        self.dilation = [2, 2]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
217 218 219
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
220 221 222

    def test_op(self):
        self.init_testcase()
223 224 225 226 227 228 229 230
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251


class OpTest_conv2d_nhwc_depthwise(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 10, 10, 8]
        self.groups = 8
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [16, f_c, 7, 7]
        self.data_format = "NHWC"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
252 253 254
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, False
        )
255 256 257

    def test_op(self):
        self.init_testcase()
258 259 260 261 262 263 264 265
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "conv2d",
            self.attrs,
            0,
            True,
        )
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287


# test channel multiplier format
class OpTest_depthwise_conv2d_nchw(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 8, 10, 10]
        self.groups = self.input_size[1]
        assert np.mod(self.input_size[1], self.groups) == 0
        channel_multiplier = 1
        self.filter_size = [self.input_size[1], channel_multiplier, 7, 7]
        self.data_format = "NCHW"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
288 289 290
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, True
        )
291 292 293

    def test_op(self):
        self.init_testcase()
294 295 296 297 298 299 300 301
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "depthwise_conv2d",
            self.attrs,
            0,
            True,
        )
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323


# test channel multiplier format
class OpTest_depthwise_conv2d_nhwc(SingleOpTester):
    def init_testcase(self):
        self.input_size = [2, 10, 10, 8]
        self.groups = self.input_size[3]
        assert np.mod(self.input_size[3], self.groups) == 0
        channel_multiplier = 4
        self.filter_size = [self.input_size[3], channel_multiplier, 7, 7]
        self.data_format = "NHWC"
        self.attrs = framework.NodeAttr()
        self.padding = [1, 1]
        self.stride = [2, 2]
        self.dilation = [1, 1]
        self.attrs.set_attr("stride", self.stride)
        self.attrs.set_attr("padding", self.padding)
        self.attrs.set_attr("dilation", self.dilation)
        self.attrs.set_attr("groups", self.groups)
        self.attrs.set_attr("data_format", self.data_format)

    def create_target_data(self, inputs_data, attrs):
324 325 326
        return conv2d_utils.conv2d_native(
            inputs_data, self.input_size, self.filter_size, self.attrs, True
        )
327 328 329

    def test_op(self):
        self.init_testcase()
330 331 332 333 334 335 336 337
        self.to_test_op(
            [self.input_size, self.filter_size],
            None,
            "depthwise_conv2d",
            self.attrs,
            0,
            True,
        )
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511


class OpTest_pool1d(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2])
    attrs.set_attr("stride_size", [2])
    attrs.set_attr("padding_size", [1, 1])
    attrs.set_attr("pool_type", "max")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool1d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8]
        self.to_test_op([input_shape], None, "pool1d", self.attrs)


class OpTest_pool1d_1(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2])
    attrs.set_attr("stride_size", [2])
    attrs.set_attr("padding_size", [2, 3])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool1d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8]
        self.to_test_op([input_shape], None, "pool1d", self.attrs)


class OpTest_pool1d_2(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2])
    attrs.set_attr("stride_size", [3])
    attrs.set_attr("padding_size", [4, 5])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", True)
    attrs.set_attr("exclusive", False)
    attrs.set_attr("data_format", "NWC")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool1d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 8, 3]
        self.to_test_op([input_shape], None, "pool1d", self.attrs)


class OpTest_pool2d(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2])
    attrs.set_attr("stride_size", [2, 2])
    attrs.set_attr("padding_size", [1, 1, 1, 1])
    attrs.set_attr("pool_type", "max")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCHW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool2d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8, 8]
        self.to_test_op([input_shape], None, "pool2d", self.attrs)


class OpTest_pool2d_1(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2])
    attrs.set_attr("stride_size", [2, 2])
    attrs.set_attr("padding_size", [2, 3, 4, 5])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCHW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool2d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8, 8]
        self.to_test_op([input_shape], None, "pool2d", self.attrs)


class OpTest_pool2d_2(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2])
    attrs.set_attr("stride_size", [3, 3])
    attrs.set_attr("padding_size", [2, 3, 4, 5])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", True)
    attrs.set_attr("exclusive", False)
    attrs.set_attr("data_format", "NHWC")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool2d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 8, 8, 3]
        self.to_test_op([input_shape], None, "pool2d", self.attrs)


# The following test is temporarily broken

# class OpTest_pool3d(SingleOpTester):
#     attrs = framework.NodeAttr()
#     attrs.attr_store = {
#         "kernel_size": [2, 2, 2],
#         "stride_size": [2, 2, 2],
#         "padding_size": [1, 2, 3, 4, 5, 6],
#         "pool_type": "max",
#         "ceil_mode": False,
#         "exclusive": True,
#         "data_format": "NCDHW"
#     }

#     def create_target_data(self, inputs_data, attrs):
#         return pool_utils.pool3d(inputs_data[0], self.attrs)

#     def test_op(self):
#         input_shape = [2, 3, 8, 8, 8]
#         self.to_test_op([input_shape], None, "pool3d", self.attrs)


class OpTest_pool3d_1(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2, 2])
    attrs.set_attr("stride_size", [2, 2, 2])
    attrs.set_attr("padding_size", [1, 1, 1, 1, 1, 1])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", False)
    attrs.set_attr("exclusive", True)
    attrs.set_attr("data_format", "NCDHW")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool3d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 3, 8, 8, 8]
        self.to_test_op([input_shape], None, "pool3d", self.attrs)


class OpTest_pool3d_2(SingleOpTester):
    attrs = framework.NodeAttr()
    attrs.set_attr("kernel_size", [2, 2, 2])
    attrs.set_attr("stride_size", [2, 2, 2])
    attrs.set_attr("padding_size", [1, 2, 3, 4, 5, 6])
    attrs.set_attr("pool_type", "avg")
    attrs.set_attr("ceil_mode", True)
    attrs.set_attr("exclusive", False)
    attrs.set_attr("data_format", "NDHWC")

    def create_target_data(self, inputs_data, attrs):
        return pool_utils.pool3d(inputs_data[0], self.attrs)

    def test_op(self):
        input_shape = [1, 8, 8, 8, 3]
        self.to_test_op([input_shape], None, "pool3d", self.attrs)


class OpTest_batchnorm(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X, Scale, Bias, Mean, Variance] = inputs_data
        c = X.shape[1]
        for i in range(0, c):
            X[:, i, :, :] = (X[:, i, :, :] - Mean[i]) / math.sqrt(
512 513
                Variance[i] + 0.00001
            ) * Scale[i] + Bias[i]
514 515 516 517
        return X

    def test_op(self):
        attrs = framework.NodeAttr()
518 519 520 521 522 523
        self.to_test_op(
            [[1, 64, 112, 112], [64], [64], [64], [64]],
            [[1, 64, 112, 112]],
            "batch_norm",
            attrs,
        )
524 525 526 527 528 529 530


class OpTest_softmax_0(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = np.zeros(X.shape).astype("float32")
        for i in range(0, Y.shape[1]):
531 532 533 534
            Y[:, i, :] = (
                np.exp(X[:, i, :])
                / np.sum(np.exp(X), axis=1, keepdims=True)[:, 0, :]
            )
535 536 537 538 539
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axis", 1)
540 541 542 543 544 545 546
        self.to_test_op(
            [[12, 224, 224]],
            [[12, 224, 224], [12, 224, 224]],
            "softmax",
            attrs,
            0,
        )
547 548 549 550 551 552 553


class OpTest_softmax_1(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = np.zeros(X.shape).astype("float32")
        for i in range(0, Y.shape[2]):
554 555 556 557
            Y[:, :, i] = (
                np.exp(X[:, :, i])
                / np.sum(np.exp(X), axis=2, keepdims=True)[:, :, 0]
            )
558 559 560 561 562
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axis", -1)
563 564 565 566 567 568 569
        self.to_test_op(
            [[12, 224, 224]],
            [[12, 224, 224], [12, 224, 224]],
            "softmax",
            attrs,
            0,
        )
570 571 572 573 574 575 576


class OpTest_softmax_2(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = np.zeros(X.shape).astype("float32")
        for i in range(0, Y.shape[0]):
577 578 579 580
            Y[i, :, :] = (
                np.exp(X[i, :, :])
                / np.sum(np.exp(X), axis=0, keepdims=True)[0, :, :]
            )
581 582 583 584 585
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axis", 0)
586 587 588 589 590 591 592
        self.to_test_op(
            [[12, 224, 224]],
            [[12, 224, 224], [12, 224, 224]],
            "softmax",
            attrs,
            0,
        )
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642


class OpTest_sigmoid(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        x = np.array(inputs_data[0])
        y = 1 / (1 + np.exp(-x))
        return y

    def test_op(self):
        attrs = framework.NodeAttr()
        self.to_test_op([[3, 224, 224]], [[3, 224, 224]], "sigmoid", attrs)


class OpTest_slice_0(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = X[:, 0:2, 2:4, :]
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axes", [0, 1, 2])
        attrs.set_attr("starts", [-3, 0, 2])
        attrs.set_attr("ends", [3, 2, 4])
        self.to_test_op([[3, 4, 5, 6]], [[3, 2, 2, 6]], "slice", attrs)


class OpTest_slice_1(SingleOpTester):
    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        Y = X[:, 0:3, 1:2, 2:4]
        return Y

    def test_op(self):
        attrs = framework.NodeAttr()
        attrs.set_attr("axes", [1, 2, 3])
        attrs.set_attr("starts", [0, 1, 2])
        attrs.set_attr("ends", [3, 2, 4])
        self.to_test_op([[3, 4, 5, 6]], [[3, 3, 1, 2]], "slice", attrs)


class OpTest_dropout_infer_0(SingleOpTester):
    def init_testcase(self):
        self.attrs = framework.NodeAttr()
        self.attrs.set_attr("dropout_prob", 0.2)
        self.attrs.set_attr("dropout_implementation", "downgrade_in_infer")

    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        assert "dropout_implementation" in self.attrs.attr_store
643 644 645 646
        if (
            self.attrs.attr_store["dropout_implementation"]
            == "downgrade_in_infer"
        ):
647 648 649 650 651 652
            return X * (1 - self.attrs.attr_store["dropout_prob"])
        else:
            return X

    def test_op(self):
        self.init_testcase()
653 654 655
        self.to_test_op(
            [[2, 1280, 2, 2]], [[2, 1280, 2, 2]], "dropout_infer", self.attrs
        )
656 657 658 659 660 661 662 663 664 665 666


class OpTest_dropout_infer_1(SingleOpTester):
    def init_testcase(self):
        self.attrs = framework.NodeAttr()
        self.attrs.set_attr("dropout_prob", 0.2)
        self.attrs.set_attr("dropout_implementation", "upscale_in_train")

    def create_target_data(self, inputs_data, attrs):
        [X] = inputs_data
        assert "dropout_implementation" in self.attrs.attr_store
667 668 669 670
        if (
            self.attrs.attr_store["dropout_implementation"]
            == "downgrade_in_infer"
        ):
671 672 673 674 675 676
            return X * (1 - self.attrs.attr_store["dropout_prob"])
        else:
            return X

    def test_op(self):
        self.init_testcase()
677 678 679
        self.to_test_op(
            [[2, 1280, 2, 2]], [[2, 1280, 2, 2]], "dropout_infer", self.attrs
        )
680 681 682 683


if __name__ == "__main__":
    unittest.main()