batch_norm_op.cc 25.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
Q
qingqing01 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
Q
qingqing01 已提交
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/data_layout.h"
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace operators {

Q
qingqing01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Scale"),
                 "Input(Scale) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Mean"),
                 "Input(Mean) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("Variance"),
                 "Input(Variance) of ConvOp should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Y"),
                 "Output(Y) of ConvOp should not be null.");
  bool is_test = ctx->Attrs().Get<bool>("is_test");
  if (!is_test) {
    PADDLE_ENFORCE(ctx->HasOutput("MeanOut"),
                   "Output(MeanOut) of ConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"),
                   "Output(VarianceOut) of ConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("SavedMean"),
                   "Output(SavedMean) of ConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"),
                   "Output(SavedVariance) of ConvOp should not be null.");
Q
Qiao Longfei 已提交
49
  }
K
Kexin Zhao 已提交
50

Q
qingqing01 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                    "Mean and MeanOut should share the same memory");
  PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0], ctx->Outputs("VarianceOut")[0],
                    "Variance and VarianceOut should share the same memory");

  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

  PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                 "Input X must have 2 to 5 dimensions.");

  const int64_t C =
      (data_layout == DataLayout::kNCHW ? x_dims[1]
                                        : x_dims[x_dims.size() - 1]);

68 69
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
70

71 72 73 74 75 76 77 78 79 80 81 82
  bool check = true;
  if ((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0 ||
                              framework::product(bias_dim) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL);
    PADDLE_ENFORCE_EQ(scale_dim[0], C);
    PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL);
    PADDLE_ENFORCE_EQ(scale_dim[0], C);
  }
Q
qingqing01 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  auto input_data_type = ctx.Input<Tensor>("X")->type();
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Scale")->type(),
                    "Scale input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Bias")->type(),
                    "Bias input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Mean")->type(),
                    "Mean input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Variance")->type(),
                    "Variance input should be of float type");

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
113
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
114 115 116 117
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
K
Kexin Zhao 已提交
118
  }
Q
qingqing01 已提交
119
#endif
Q
Qiao Longfei 已提交
120

Q
qingqing01 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
}

void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
        PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                       "'epsilon' should be between 0.0 and 0.001.");
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_with_relu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
  AddComment(R"DOC(
181
Batch Normalization.
Q
Qiao Longfei 已提交
182

183 184 185 186 187 188
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
189 190

)DOC");
Q
qingqing01 已提交
191
}
C
chengduo 已提交
192

Q
Qiao Longfei 已提交
193
template <typename T>
Q
QI JUN 已提交
194 195
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
196 197 198 199 200
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
201 202 203 204
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

    bool global_stats = is_test || use_global_stats;

Q
QI JUN 已提交
205 206 207
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
208 209 210

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
211 212
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
213 214
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
215 216
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

232
    if (!global_stats) {
Q
Qiao Longfei 已提交
233 234 235 236 237 238 239 240
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

241 242 243 244 245 246 247 248
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
        LOG(WARNING) << "Only 1 element in normalization dimension, "
                     << "we skip the batch norm calculation, let y = x.";
249
        framework::TensorCopy(*x, ctx.GetPlace(), y);
250 251 252
        return;
      }

Q
QI JUN 已提交
253 254
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
255 256 257 258 259 260 261 262 263 264 265 266
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
267
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
281
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
282 283 284 285 286 287 288 289 290 291
      }

      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
292
    if (global_stats) {
Q
Qiao Longfei 已提交
293 294 295 296 297 298 299 300 301 302 303
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
304 305
        global_stats ? ctx.Input<Tensor>("Mean")->data<T>()
                     : ctx.Output<Tensor>("SavedMean")->data<T>(),
Q
Qiao Longfei 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
319 320
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
321 322 323 324 325 326 327 328
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
329
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
330 331 332 333 334 335 336 337 338
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
339
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
340 341 342 343
    }
  }
};

Q
qingqing01 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
  PADDLE_ENFORCE(ctx->HasInput("X"));
  PADDLE_ENFORCE(ctx->HasInput("Scale"), "Input(scale) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                 "Input(Y@GRAD) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("SavedMean"),
                 "Input(SavedMean) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("SavedVariance"),
                 "Input(SavedVariance) should not be null");

  // check output
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
                   "Output(Scale@GRAD) and Output(Bias@GRAD) should not be "
                   "null at same time");
  }
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
    PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_mkldnn"),
                   "Using global stats during training is not supported "
                   "in gradient op kernel of batch_norm_mkldnn_op now.");
  }
Q
Qiao Longfei 已提交
368

Q
qingqing01 已提交
369 370 371 372 373
  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
  const int C = (data_layout == DataLayout::kNCHW ? x_dims[1]
                                                  : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
374

Q
qingqing01 已提交
375 376 377 378
  ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
379
  }
Q
qingqing01 已提交
380
}
Q
Qiao Longfei 已提交
381

Q
qingqing01 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
    PADDLE_THROW("can't find Y@GRAD");
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW("can't find Y@GRAD");
  }
397

Q
qingqing01 已提交
398 399 400
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
401

402
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
403 404 405 406 407
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
408
#endif
409

Q
qingqing01 已提交
410 411 412
  return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), ctx.GetPlace(),
                                 layout, library);
}
Q
Qiao Longfei 已提交
413 414

template <typename T>
Q
QI JUN 已提交
415
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
416 417 418 419 420 421 422 423 424
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
425
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
426 427
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const float epsilon = ctx.Attr<float>("epsilon");
Q
QI JUN 已提交
428 429
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
430 431 432 433

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
434 435
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
436 437
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
438 439
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
440 441 442 443 444 445 446 447
    const int sample_size = x->numel() / N / C;

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

    const T *mean_data = saved_mean->data<T>();
    const T *inv_var_data = saved_inv_variance->data<T>();
    Tensor inv_var_tensor;
    if (use_global_stats) {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_variance = ctx.Input<Tensor>("Variance");
      mean_data = running_mean->data<T>();
      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

      inv_var_tmp = (var_arr + epsilon).sqrt().inverse().eval();
      inv_var_data = running_inv_var_data;
    }

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
    }
Q
Qiao Longfei 已提交
476 477 478 479 480

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
481 482
    EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
Q
Qiao Longfei 已提交
483

484 485 486 487
    if (d_scale && d_bias) {
      d_bias_arr.setZero();
      d_scale_arr.setZero();
    }
Q
Qiao Longfei 已提交
488

489 490
    if ((N * sample_size) == 1 && !use_global_stats) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
491 492 493
      return;
    }

494 495
    int scale_coefff = use_global_stats ? 1 : N * sample_size;
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff;
Q
Qiao Longfei 已提交
496

Q
QI JUN 已提交
497 498
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
499 500 501 502 503 504
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

505 506 507 508 509 510 511 512
        if (d_scale && d_bias) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_bias_arr(c) += d_y_arr.col(nc).sum();
            d_scale_arr(c) += ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) *
                               d_y_arr.col(nc))
                                  .sum();
          }
Q
Qiao Longfei 已提交
513
        }
514 515 516 517 518 519 520 521 522 523 524 525 526 527
        if (!use_global_stats) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) +=
                scale_inv_var_nhw(c) *
                (d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) -
                 (x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) *
                     inv_var_arr(c));
          }
        } else {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) += scale_inv_var_nhw(c) * d_y_arr.col(nc);
          }
Q
Qiao Longfei 已提交
528 529 530
        }
        break;
      }
Q
QI JUN 已提交
531
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
532 533 534 535 536 537 538 539 540 541 542
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

        const auto d_y_row_sum = d_y_arr.rowwise().sum();
        const auto x_minus_mean = x_arr.colwise() - mean_arr;
        const auto d_y_mul_x_minus_mean_row_sum =
            (d_y_arr * x_minus_mean).rowwise().sum();
        const auto inv_var_sqr = inv_var_arr * inv_var_arr;
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563

        if (d_scale && d_bias) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_bias_arr += d_y_arr.col(nhw);
            d_scale_arr +=
                (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
          }
        }

        if (!use_global_stats) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) +=
                scale_inv_var_nhw *
                (d_y_arr.col(nhw) * N * sample_size - d_y_row_sum -
                 x_minus_mean.col(nhw) * inv_var_sqr *
                     d_y_mul_x_minus_mean_row_sum);
          }
        } else {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) += scale_inv_var_nhw * d_y_arr.col(nhw);
          }
Q
Qiao Longfei 已提交
564 565 566 567
        }
        break;
      }
      default:
Q
QI JUN 已提交
568
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
569 570 571 572
    }
  }
};

Q
qingqing01 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
std::unique_ptr<framework::OpDesc> BatchNormGradMaker::Apply() const {
  auto *op = new framework::OpDesc();
  op->SetType(GradOpType());
  op->SetInput("X", Input("X"));
  op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));

  op->SetInput("Scale", Input("Scale"));
  op->SetInput("Bias", Input("Bias"));
  op->SetInput("SavedMean", Output("SavedMean"));
  op->SetInput("SavedVariance", Output("SavedVariance"));

  // used when setting use_global_stats True during training
  if (boost::get<bool>(GetAttr("use_global_stats"))) {
    op->SetInput("Mean", Output("MeanOut"));
    op->SetInput("Variance", Output("VarianceOut"));
  }
589

Q
qingqing01 已提交
590
  op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
591

Q
qingqing01 已提交
592 593 594
  op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
Y
Yu Yang 已提交
595

Q
qingqing01 已提交
596 597
  return std::unique_ptr<framework::OpDesc>(op);
}
Y
Yu Yang 已提交
598

D
dzhwinter 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
class BatchNormInplaceInToOut : public framework::InplaceInToOut {
 public:
  using InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const framework::OpDesc &op_desc,
      framework::BlockDesc *block) const override {
    std::unordered_map<std::string, std::string> inplace_in_to_out = {
        {"Mean", "MeanOut"}, {"Variance", "VarianceOut"}, {"X", "Y"},
    };
    return inplace_in_to_out;
  }
};

class BatchNormGradInplaceInToOut : public framework::InplaceInToOut {
 public:
  using InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const framework::OpDesc &op_desc,
      framework::BlockDesc *block) const override {
    std::unordered_map<std::string, std::string> inplace_in_to_out = {
        // Scale, Bias, SavedMean, SavedVariance shape is [batch_size, C]
        {framework::GradVarName("Y"), framework::GradVarName("X")},
        {"SavedMean", framework::GradVarName("Scale")},
        {"SavedVariance", framework::GradVarName("Bias")},
    };
    return inplace_in_to_out;
  }
};

Q
Qiao Longfei 已提交
632 633 634 635
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
636
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
Q
qingqing01 已提交
637 638 639 640
                  ops::BatchNormOpInferVarType, ops::BatchNormGradMaker)
// ops::BatchNormInplaceInToOut);
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp)
//                  ops::BatchNormGradInplaceInToOut);
Y
Yu Yang 已提交
641

Q
QI JUN 已提交
642
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
643 644
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
645 646
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
647 648
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);