test_activation_op.py 6.2 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import unittest
import numpy as np
from op_test import OpTest


class TestExp(OpTest):
    def setUp(self):
        self.op_type = "exp"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.exp(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSigmoid(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))}

    def test_check_output(self):
        self.check_output()

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.008)


class TestTanh(OpTest):
    def setUp(self):
        self.op_type = "tanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.tanh(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSqrt(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.sqrt(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestAbs(OpTest):
    def setUp(self):
        self.op_type = "abs"
Q
qijun 已提交
69 70 71 72 73 74
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        # Because we set delta = 0.005 in caculating numeric gradient,
        # if x is too small, such as 0.002, x_neg will be -0.003
        # x_pos will be 0.007, so the numeric gradient is unaccurate.
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
75 76 77 78 79 80 81 82 83 84
        self.inputs = {'X': x}
        self.outputs = {'Y': np.abs(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


Q
qijun 已提交
85
class TestRelu(OpTest):
86
    def setUp(self):
Q
qijun 已提交
87 88 89 90 91 92
        self.op_type = "relu"
        x = np.random.uniform(-1, 1, [11, 17]).astype("float32")
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        self.inputs = {'X': x}
        self.outputs = {'Y': np.maximum(self.inputs['X'], 0)}
93 94 95 96 97 98 99 100 101 102 103 104

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestBRelu(OpTest):
    def setUp(self):
        self.op_type = "brelu"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
Q
qijun 已提交
105
        t_min = 1
106
        t_max = 4
Q
qijun 已提交
107 108
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
109
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
Q
qijun 已提交
110 111

        self.inputs = {'X': x}
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        self.attrs = {'t_min': t_min, 't_max': t_max}
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
        self.outputs = {'Y': t}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


class TestSoftRelu(OpTest):
    def setUp(self):
        self.op_type = "soft_relu"
Q
qijun 已提交
128 129 130 131 132
        x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
        threshold = 2
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
133 134 135 136 137 138 139 140 141 142 143 144 145 146
        self.inputs = {'X': x}
        self.attrs = {'threshold': threshold}
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
        self.outputs = {'Y': np.log((np.exp(t) + 1))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


Q
qijun 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
class TestReciprocal(OpTest):
    def setUp(self):
        self.op_type = "reciprocal"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
        self.outputs = {'Y': np.reciprocal(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.01)


class TestLog(OpTest):
    def setUp(self):
        self.op_type = "log"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.log(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSquare(OpTest):
    def setUp(self):
        self.op_type = "square"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.square(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
class TestPow(OpTest):
    def setUp(self):
        self.op_type = "pow"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
        self.attrs = {'factor': 3}
        self.outputs = {'Y': np.power(self.inputs['X'], 3)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


class TestSTanh(OpTest):
    def setUp(self):
        self.op_type = "stanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
        self.outputs = {'Y': scale_b * np.tanh(self.inputs['X'] * scale_a)}

    def test_check_output(self):
        self.check_output()

Q
qijun 已提交
218 219 220 221 222 223
    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


if __name__ == "__main__":
    unittest.main()