collect_fpn_proposals_op.cu 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
  Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
      http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#ifdef __NVCC__
13
#include "cub/cub.cuh"
14 15 16
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
17
namespace cub = hipcub;
18 19 20
#endif

#include <paddle/fluid/memory/allocation/allocator.h>
21

22 23 24 25 26 27 28
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/detection/collect_fpn_proposals_op.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
29
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
30
#include "paddle/fluid/platform/for_range.h"
31
#include "paddle/phi/kernels/funcs/gather.cu.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 64;
static constexpr int kNumMaxinumNumBlocks = 4096;

const int kBBoxSize = 4;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

49 50
static __global__ void GetLengthLoD(const int nthreads,
                                    const int* batch_ids,
51
                                    int* length_lod) {
52
  CUDA_KERNEL_LOOP(i, nthreads) {
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    platform::CudaAtomicAdd(length_lod + batch_ids[i], 1);
  }
}

template <typename DeviceContext, typename T>
class GPUCollectFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto roi_ins = ctx.MultiInput<LoDTensor>("MultiLevelRois");
    const auto score_ins = ctx.MultiInput<LoDTensor>("MultiLevelScores");
    auto fpn_rois = ctx.Output<LoDTensor>("FpnRois");
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    const int post_nms_topN = ctx.Attr<int>("post_nms_topN");

    // concat inputs along axis = 0
    int roi_offset = 0;
    int score_offset = 0;
    int total_roi_num = 0;
    for (size_t i = 0; i < roi_ins.size(); ++i) {
      total_roi_num += roi_ins[i]->dims()[0];
    }

    int real_post_num = min(post_nms_topN, total_roi_num);
    fpn_rois->mutable_data<T>({real_post_num, kBBoxSize}, dev_ctx.GetPlace());
    Tensor concat_rois;
    Tensor concat_scores;
    T* concat_rois_data = concat_rois.mutable_data<T>(
        {total_roi_num, kBBoxSize}, dev_ctx.GetPlace());
    T* concat_scores_data =
        concat_scores.mutable_data<T>({total_roi_num, 1}, dev_ctx.GetPlace());
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({total_roi_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    int index = 0;
    int lod_size;
90
    auto place = dev_ctx.GetPlace();
91

92
    auto multi_rois_num = ctx.MultiInput<Tensor>("MultiLevelRoIsNum");
93 94 95
    for (size_t i = 0; i < roi_ins.size(); ++i) {
      auto roi_in = roi_ins[i];
      auto score_in = score_ins[i];
96 97
      if (multi_rois_num.size() > 0) {
        framework::Tensor temp;
98 99
        paddle::framework::TensorCopySync(
            *multi_rois_num[i], platform::CPUPlace(), &temp);
100 101 102 103 104 105 106 107 108 109 110 111 112 113
        const int* length_in = temp.data<int>();
        lod_size = multi_rois_num[i]->numel();
        for (size_t n = 0; n < lod_size; ++n) {
          for (size_t j = 0; j < length_in[n]; ++j) {
            roi_batch_id_data[index++] = n;
          }
        }
      } else {
        auto length_in = roi_in->lod().back();
        lod_size = length_in.size() - 1;
        for (size_t n = 0; n < lod_size; ++n) {
          for (size_t j = length_in[n]; j < length_in[n + 1]; ++j) {
            roi_batch_id_data[index++] = n;
          }
114 115 116
        }
      }

117 118 119 120 121
      memory::Copy(place,
                   concat_rois_data + roi_offset,
                   place,
                   roi_in->data<T>(),
                   roi_in->numel() * sizeof(T),
122
                   dev_ctx.stream());
123 124 125 126 127
      memory::Copy(place,
                   concat_scores_data + score_offset,
                   place,
                   score_in->data<T>(),
                   score_in->numel() * sizeof(T),
128 129 130 131 132 133 134
                   dev_ctx.stream());
      roi_offset += roi_in->numel();
      score_offset += score_in->numel();
    }

    // copy batch id list to GPU
    Tensor roi_batch_id_list_gpu;
135 136
    framework::TensorCopy(
        roi_batch_id_list, dev_ctx.GetPlace(), &roi_batch_id_list_gpu);
137 138 139 140

    Tensor index_in_t;
    int* idx_in =
        index_in_t.mutable_data<int>({total_roi_num}, dev_ctx.GetPlace());
L
Leo Chen 已提交
141
    platform::ForRange<phi::GPUContext> for_range_total(dev_ctx, total_roi_num);
142 143 144 145 146 147 148 149 150 151 152
    for_range_total(RangeInitFunctor{0, 1, idx_in});

    Tensor keys_out_t;
    T* keys_out =
        keys_out_t.mutable_data<T>({total_roi_num}, dev_ctx.GetPlace());
    Tensor index_out_t;
    int* idx_out =
        index_out_t.mutable_data<int>({total_roi_num}, dev_ctx.GetPlace());

    // Determine temporary device storage requirements
    size_t temp_storage_bytes = 0;
153 154 155 156 157 158 159 160 161 162
    cub::DeviceRadixSort::SortPairsDescending<T, int>(nullptr,
                                                      temp_storage_bytes,
                                                      concat_scores.data<T>(),
                                                      keys_out,
                                                      idx_in,
                                                      idx_out,
                                                      total_roi_num,
                                                      0,
                                                      sizeof(T) * 8,
                                                      dev_ctx.stream());
163
    // Allocate temporary storage
164
    auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);
165

166 167
    // Run sorting operation
    // sort score to get corresponding index
168 169 170 171 172 173 174 175 176 177
    cub::DeviceRadixSort::SortPairsDescending<T, int>(d_temp_storage->ptr(),
                                                      temp_storage_bytes,
                                                      concat_scores.data<T>(),
                                                      keys_out,
                                                      idx_in,
                                                      idx_out,
                                                      total_roi_num,
                                                      0,
                                                      sizeof(T) * 8,
                                                      dev_ctx.stream());
178 179 180 181 182
    index_out_t.Resize({real_post_num});
    Tensor sorted_rois;
    sorted_rois.mutable_data<T>({real_post_num, kBBoxSize}, dev_ctx.GetPlace());
    Tensor sorted_batch_id;
    sorted_batch_id.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
183
    phi::funcs::GPUGather<T>(dev_ctx, concat_rois, index_out_t, &sorted_rois);
184 185
    phi::funcs::GPUGather<int>(
        dev_ctx, roi_batch_id_list_gpu, index_out_t, &sorted_batch_id);
186 187 188 189

    Tensor batch_index_t;
    int* batch_idx_in =
        batch_index_t.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
L
Leo Chen 已提交
190
    platform::ForRange<phi::GPUContext> for_range_post(dev_ctx, real_post_num);
191 192 193 194 195 196 197
    for_range_post(RangeInitFunctor{0, 1, batch_idx_in});

    Tensor out_id_t;
    int* out_id_data =
        out_id_t.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
    // Determine temporary device storage requirements
    temp_storage_bytes = 0;
198 199 200 201 202 203 204 205 206 207
    cub::DeviceRadixSort::SortPairs<int, int>(nullptr,
                                              temp_storage_bytes,
                                              sorted_batch_id.data<int>(),
                                              out_id_data,
                                              batch_idx_in,
                                              index_out_t.data<int>(),
                                              real_post_num,
                                              0,
                                              sizeof(int) * 8,
                                              dev_ctx.stream());
208
    // Allocate temporary storage
209
    d_temp_storage = memory::Alloc(place, temp_storage_bytes);
210

211 212
    // Run sorting operation
    // sort batch_id to get corresponding index
213 214 215 216 217 218 219 220 221 222
    cub::DeviceRadixSort::SortPairs<int, int>(d_temp_storage->ptr(),
                                              temp_storage_bytes,
                                              sorted_batch_id.data<int>(),
                                              out_id_data,
                                              batch_idx_in,
                                              index_out_t.data<int>(),
                                              real_post_num,
                                              0,
                                              sizeof(int) * 8,
                                              dev_ctx.stream());
223

224
    phi::funcs::GPUGather<T>(dev_ctx, sorted_rois, index_out_t, fpn_rois);
225 226 227 228

    Tensor length_lod;
    int* length_lod_data =
        length_lod.mutable_data<int>({lod_size}, dev_ctx.GetPlace());
L
Leo Chen 已提交
229
    phi::funcs::SetConstant<phi::GPUContext, int> set_zero;
230 231 232 233 234 235
    set_zero(dev_ctx, &length_lod, static_cast<int>(0));

    int blocks = NumBlocks(real_post_num);
    int threads = kNumCUDAThreads;

    // get length-based lod by batch ids
236 237
    GetLengthLoD<<<blocks, threads, 0, dev_ctx.stream()>>>(
        real_post_num, out_id_data, length_lod_data);
238
    std::vector<int> length_lod_cpu(lod_size);
239 240 241 242 243 244
    memory::Copy(platform::CPUPlace(),
                 length_lod_cpu.data(),
                 place,
                 length_lod_data,
                 sizeof(int) * lod_size,
                 dev_ctx.stream());
245 246 247 248 249 250 251
    dev_ctx.Wait();

    std::vector<size_t> offset(1, 0);
    for (int i = 0; i < lod_size; ++i) {
      offset.emplace_back(offset.back() + length_lod_cpu[i]);
    }

252 253 254
    if (ctx.HasOutput("RoisNum")) {
      auto* rois_num = ctx.Output<Tensor>("RoisNum");
      int* rois_num_data = rois_num->mutable_data<int>({lod_size}, place);
255 256 257 258 259 260
      memory::Copy(place,
                   rois_num_data,
                   place,
                   length_lod_data,
                   lod_size * sizeof(int),
                   dev_ctx.stream());
261 262
    }

263 264 265 266 267 268 269 270 271 272 273 274
    framework::LoD lod;
    lod.emplace_back(offset);
    fpn_rois->set_lod(lod);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    collect_fpn_proposals,
L
Leo Chen 已提交
275 276
    ops::GPUCollectFpnProposalsOpKernel<phi::GPUContext, float>,
    ops::GPUCollectFpnProposalsOpKernel<phi::GPUContext, double>);