collect_fpn_proposals_op.cu 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
  Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
      http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#ifdef __NVCC__
13
#include "cub/cub.cuh"
14 15 16
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
17
namespace cub = hipcub;
18 19 20
#endif

#include <paddle/fluid/memory/allocation/allocator.h>
21

22 23 24 25 26 27 28
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/detection/collect_fpn_proposals_op.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
29
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
30
#include "paddle/fluid/platform/for_range.h"
31
#include "paddle/phi/kernels/funcs/gather.cu.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 64;
static constexpr int kNumMaxinumNumBlocks = 4096;

const int kBBoxSize = 4;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

49 50
static __global__ void GetLengthLoD(const int nthreads,
                                    const int* batch_ids,
51
                                    int* length_lod) {
52
  CUDA_KERNEL_LOOP(i, nthreads) {
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    platform::CudaAtomicAdd(length_lod + batch_ids[i], 1);
  }
}

template <typename DeviceContext, typename T>
class GPUCollectFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto roi_ins = ctx.MultiInput<LoDTensor>("MultiLevelRois");
    const auto score_ins = ctx.MultiInput<LoDTensor>("MultiLevelScores");
    auto fpn_rois = ctx.Output<LoDTensor>("FpnRois");
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    const int post_nms_topN = ctx.Attr<int>("post_nms_topN");

    // concat inputs along axis = 0
    int roi_offset = 0;
    int score_offset = 0;
    int total_roi_num = 0;
    for (size_t i = 0; i < roi_ins.size(); ++i) {
      total_roi_num += roi_ins[i]->dims()[0];
    }

    int real_post_num = min(post_nms_topN, total_roi_num);
    fpn_rois->mutable_data<T>({real_post_num, kBBoxSize}, dev_ctx.GetPlace());
    Tensor concat_rois;
    Tensor concat_scores;
    T* concat_rois_data = concat_rois.mutable_data<T>(
        {total_roi_num, kBBoxSize}, dev_ctx.GetPlace());
    T* concat_scores_data =
        concat_scores.mutable_data<T>({total_roi_num, 1}, dev_ctx.GetPlace());
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({total_roi_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    int index = 0;
    int lod_size;
90
    auto place = dev_ctx.GetPlace();
91

92
    auto multi_rois_num = ctx.MultiInput<Tensor>("MultiLevelRoIsNum");
93 94 95
    for (size_t i = 0; i < roi_ins.size(); ++i) {
      auto roi_in = roi_ins[i];
      auto score_in = score_ins[i];
96 97
      if (multi_rois_num.size() > 0) {
        framework::Tensor temp;
98 99
        paddle::framework::TensorCopySync(
            *multi_rois_num[i], platform::CPUPlace(), &temp);
100 101 102 103 104 105 106 107 108 109 110 111 112 113
        const int* length_in = temp.data<int>();
        lod_size = multi_rois_num[i]->numel();
        for (size_t n = 0; n < lod_size; ++n) {
          for (size_t j = 0; j < length_in[n]; ++j) {
            roi_batch_id_data[index++] = n;
          }
        }
      } else {
        auto length_in = roi_in->lod().back();
        lod_size = length_in.size() - 1;
        for (size_t n = 0; n < lod_size; ++n) {
          for (size_t j = length_in[n]; j < length_in[n + 1]; ++j) {
            roi_batch_id_data[index++] = n;
          }
114 115 116
        }
      }

117 118 119 120 121
      memory::Copy(place,
                   concat_rois_data + roi_offset,
                   place,
                   roi_in->data<T>(),
                   roi_in->numel() * sizeof(T),
122
                   dev_ctx.stream());
123 124 125 126 127
      memory::Copy(place,
                   concat_scores_data + score_offset,
                   place,
                   score_in->data<T>(),
                   score_in->numel() * sizeof(T),
128 129 130 131 132 133 134
                   dev_ctx.stream());
      roi_offset += roi_in->numel();
      score_offset += score_in->numel();
    }

    // copy batch id list to GPU
    Tensor roi_batch_id_list_gpu;
135 136
    framework::TensorCopy(
        roi_batch_id_list, dev_ctx.GetPlace(), &roi_batch_id_list_gpu);
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

    Tensor index_in_t;
    int* idx_in =
        index_in_t.mutable_data<int>({total_roi_num}, dev_ctx.GetPlace());
    platform::ForRange<platform::CUDADeviceContext> for_range_total(
        dev_ctx, total_roi_num);
    for_range_total(RangeInitFunctor{0, 1, idx_in});

    Tensor keys_out_t;
    T* keys_out =
        keys_out_t.mutable_data<T>({total_roi_num}, dev_ctx.GetPlace());
    Tensor index_out_t;
    int* idx_out =
        index_out_t.mutable_data<int>({total_roi_num}, dev_ctx.GetPlace());

    // Determine temporary device storage requirements
    size_t temp_storage_bytes = 0;
154 155 156 157 158 159 160 161 162 163
    cub::DeviceRadixSort::SortPairsDescending<T, int>(nullptr,
                                                      temp_storage_bytes,
                                                      concat_scores.data<T>(),
                                                      keys_out,
                                                      idx_in,
                                                      idx_out,
                                                      total_roi_num,
                                                      0,
                                                      sizeof(T) * 8,
                                                      dev_ctx.stream());
164
    // Allocate temporary storage
165
    auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);
166

167 168
    // Run sorting operation
    // sort score to get corresponding index
169 170 171 172 173 174 175 176 177 178
    cub::DeviceRadixSort::SortPairsDescending<T, int>(d_temp_storage->ptr(),
                                                      temp_storage_bytes,
                                                      concat_scores.data<T>(),
                                                      keys_out,
                                                      idx_in,
                                                      idx_out,
                                                      total_roi_num,
                                                      0,
                                                      sizeof(T) * 8,
                                                      dev_ctx.stream());
179 180 181 182 183
    index_out_t.Resize({real_post_num});
    Tensor sorted_rois;
    sorted_rois.mutable_data<T>({real_post_num, kBBoxSize}, dev_ctx.GetPlace());
    Tensor sorted_batch_id;
    sorted_batch_id.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
184
    phi::funcs::GPUGather<T>(dev_ctx, concat_rois, index_out_t, &sorted_rois);
185 186
    phi::funcs::GPUGather<int>(
        dev_ctx, roi_batch_id_list_gpu, index_out_t, &sorted_batch_id);
187 188 189 190 191 192 193 194 195 196 197 198 199

    Tensor batch_index_t;
    int* batch_idx_in =
        batch_index_t.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
    platform::ForRange<platform::CUDADeviceContext> for_range_post(
        dev_ctx, real_post_num);
    for_range_post(RangeInitFunctor{0, 1, batch_idx_in});

    Tensor out_id_t;
    int* out_id_data =
        out_id_t.mutable_data<int>({real_post_num}, dev_ctx.GetPlace());
    // Determine temporary device storage requirements
    temp_storage_bytes = 0;
200 201 202 203 204 205 206 207 208 209
    cub::DeviceRadixSort::SortPairs<int, int>(nullptr,
                                              temp_storage_bytes,
                                              sorted_batch_id.data<int>(),
                                              out_id_data,
                                              batch_idx_in,
                                              index_out_t.data<int>(),
                                              real_post_num,
                                              0,
                                              sizeof(int) * 8,
                                              dev_ctx.stream());
210
    // Allocate temporary storage
211
    d_temp_storage = memory::Alloc(place, temp_storage_bytes);
212

213 214
    // Run sorting operation
    // sort batch_id to get corresponding index
215 216 217 218 219 220 221 222 223 224
    cub::DeviceRadixSort::SortPairs<int, int>(d_temp_storage->ptr(),
                                              temp_storage_bytes,
                                              sorted_batch_id.data<int>(),
                                              out_id_data,
                                              batch_idx_in,
                                              index_out_t.data<int>(),
                                              real_post_num,
                                              0,
                                              sizeof(int) * 8,
                                              dev_ctx.stream());
225

226
    phi::funcs::GPUGather<T>(dev_ctx, sorted_rois, index_out_t, fpn_rois);
227 228 229 230

    Tensor length_lod;
    int* length_lod_data =
        length_lod.mutable_data<int>({lod_size}, dev_ctx.GetPlace());
231
    phi::funcs::SetConstant<platform::CUDADeviceContext, int> set_zero;
232 233 234 235 236 237
    set_zero(dev_ctx, &length_lod, static_cast<int>(0));

    int blocks = NumBlocks(real_post_num);
    int threads = kNumCUDAThreads;

    // get length-based lod by batch ids
238 239
    GetLengthLoD<<<blocks, threads, 0, dev_ctx.stream()>>>(
        real_post_num, out_id_data, length_lod_data);
240
    std::vector<int> length_lod_cpu(lod_size);
241 242 243 244 245 246
    memory::Copy(platform::CPUPlace(),
                 length_lod_cpu.data(),
                 place,
                 length_lod_data,
                 sizeof(int) * lod_size,
                 dev_ctx.stream());
247 248 249 250 251 252 253
    dev_ctx.Wait();

    std::vector<size_t> offset(1, 0);
    for (int i = 0; i < lod_size; ++i) {
      offset.emplace_back(offset.back() + length_lod_cpu[i]);
    }

254 255 256
    if (ctx.HasOutput("RoisNum")) {
      auto* rois_num = ctx.Output<Tensor>("RoisNum");
      int* rois_num_data = rois_num->mutable_data<int>({lod_size}, place);
257 258 259 260 261 262
      memory::Copy(place,
                   rois_num_data,
                   place,
                   length_lod_data,
                   lod_size * sizeof(int),
                   dev_ctx.stream());
263 264
    }

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    framework::LoD lod;
    lod.emplace_back(offset);
    fpn_rois->set_lod(lod);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    collect_fpn_proposals,
    ops::GPUCollectFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                        float>,
    ops::GPUCollectFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                        double>);