tensor_patch_methods.py 34.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22
from .. import framework
姜永久 已提交
23
from ..framework import convert_np_dtype_to_dtype_
24
from .. import core
25
from .. import unique_name
26 27 28 29 30 31 32 33
from ..framework import (
    Variable,
    Parameter,
    _getitem_impl_,
    _setitem_impl_,
    EagerParamBase,
    in_dygraph_mode,
)
34
from .base import switch_to_static_graph
35
from .math_op_patch import monkey_patch_math_tensor
36 37 38 39
from paddle.fluid.data_feeder import (
    convert_uint16_to_float,
    _PADDLE_DTYPE_2_NUMPY_DTYPE,
)
40
import paddle.utils.deprecated as deprecated
C
chenjian 已提交
41
import paddle.profiler as profiler
42
from paddle.profiler.utils import in_profiler_mode
43
from paddle import _C_ops, _legacy_C_ops
44
from paddle.device import get_all_custom_device_type
45
from paddle.fluid.framework import _global_flags
46

47 48
_grad_scalar = None

49

50
class TensorHookRemoveHelper:
51 52
    """
    A helper class that for removing Tensor gradient's hook.
53
    NOTE(wuweilong):the operation weakref.ref(tensor) will cause some unexpected errors in eager mode.
54 55 56
    """

    def __init__(self, tensor, hook_id):
57
        self._tensor = tensor
58 59 60 61 62 63 64 65 66
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
67
        tensor = self._tensor
68 69 70 71 72 73 74
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
75 76 77
                    % (self._hook_id, tensor.name),
                    RuntimeWarning,
                )
78 79 80
        return False


81 82 83
_already_patch_repr = False


84
def monkey_patch_tensor():
85 86 87 88 89 90
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

W
wanghuancoder 已提交
91
        Transform a Tensor into static Variable with same attributes. It's a low level interface used
92 93 94
        in dy2static and shall not be called directly.

        Args:
W
wanghuancoder 已提交
95 96
            to_parameter (bool): It takes effect only if the input a Tensor. If set True,
                                 the Tensor will be converted into framework.Parameters. Otherwise, it will
97 98 99 100 101 102 103 104 105 106 107
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
108 109
                    tensor = to_variable(data)
                    static_var = tensor._to_static_var()
110 111

        """
112

113
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
114
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
W
wanghuancoder 已提交
115 116 117 118 119 120 121 122 123 124
        attr_not_need_keys = [
            'grad',
            'T',
            'place',
            '_place_str',
            'data',
            'grad_',
            'strides',
            'offset',
        ]
125
        param_keys = ['stop_gradient', 'trainable']
W
wanghuancoder 已提交
126
        if isinstance(self, EagerParamBase):
127
            attr_kwargs = self.__dict__.copy()
128 129
            for key in param_keys:
                attr_kwargs[key] = getattr(self, key)
130
        else:
131 132
            attr_names = []
            for name in dir(self):
133
                if name not in attr_not_need_keys:
134 135 136
                    if not inspect.ismethod(
                        getattr(self, name)
                    ) and not name.startswith('_'):
137
                        attr_names.append(name)
138 139 140 141 142 143
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

144 145 146 147
        # If specify block, use it instead of self.block
        if 'block' in kwargs:
            attr_kwargs['block'] = kwargs['block']

148 149
        attr_kwargs.update(kwargs)

W
wanghuancoder 已提交
150
        if to_parameter or isinstance(self, EagerParamBase):
151
            del attr_kwargs['persistable']
152 153
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
154 155 156 157 158
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

159 160 161 162 163
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
164
            **This API is ONLY available in Dygraph mode**
165 166 167 168 169 170 171 172 173 174 175

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
176
                from paddle.nn import Linear
177 178
                import numpy as np

179
                data = np.ones([3, 1024], dtype='float32')
180
                with fluid.dygraph.guard():
181
                    linear = Linear(1024, 4)
182
                    t = to_variable(data)
183
                    linear(t)  # call with default weight
184
                    custom_weight = np.random.randn(1024, 4).astype("float32")
185 186
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
187 188

        """
W
wanghuancoder 已提交
189
        base_tensor = core.eager.Tensor
190 191
        assert isinstance(
            value, (np.ndarray, base_tensor, dict, str)
W
wanghuancoder 已提交
192
        ), "Variable set_value function, arguments type only support Variable, numpy, Tensor, dict, string."
S
Steffy-zxf 已提交
193 194 195 196 197

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
198 199
                self.name, len(self), len(value)
            )
S
Steffy-zxf 已提交
200 201 202 203 204
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
205 206 207 208 209
            assert self.shape == list(
                value.shape
            ), "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                self.name, self.shape, value.shape
            )
C
crystal 已提交
210 211 212 213 214

            if isinstance(value, base_tensor):
                dtype = value.dtype
            else:
                dtype = convert_np_dtype_to_dtype_(value.dtype)
215

216 217 218 219 220
            assert (
                self.dtype == dtype
            ), "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                self.name, self.dtype, dtype
            )
221

W
wanghuancoder 已提交
222
            # NOTE(wuweilong): self could be Tensor, the subsequent behavior are defined in different files
223
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
224
            # this Interface behavior will be unifed in the future.
225 226 227
            self.value().get_tensor().set(
                value, framework._current_expected_place()
            )
228 229

    @framework.dygraph_only
230
    def backward(self, grad_tensor=None, retain_graph=False):
231
        """
232
        Run backward of current Graph which starts from current Tensor.
233

234
        The new gradient will accumulate on previous gradient.
235 236 237

        You can clear gradient by ``Tensor.clear_grad()`` .

238
        Args:
C
chenjian 已提交
239 240
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None,
            the initial gradient values of the current Tensor would be Tensor filled with 1.0;
241
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
242
            The default value is None.
243

244
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
245
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
246
                :code:`retain_graph` to True, then the grads will be retained. Thus, setting it to False is much more memory-efficient.
247
                Defaults to False.
248 249 250 251 252 253
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

254
                import paddle
255 256 257 258 259 260 261 262 263 264 265 266 267 268
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
269

270 271 272 273 274 275 276 277 278 279 280
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

281
        """
282
        if framework.in_dygraph_mode():
283 284
            if in_profiler_mode():
                record_event = profiler.RecordEvent(
285 286
                    "Gradient Backward", profiler.TracerEventType.Backward
                )
287
                record_event.begin()
288
            if grad_tensor is not None:
289 290 291 292
                assert isinstance(
                    grad_tensor, core.eager.Tensor
                ), "The type of grad_tensor must be paddle.Tensor"

293 294 295 296 297
                assert (
                    grad_tensor.shape == self.shape
                ), "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape
                )
298

299 300 301 302
            if grad_tensor is None:
                grad_tensor = []
            else:
                grad_tensor = [grad_tensor]
303 304 305
            if _grad_scalar:
                # When using amp with Fleet DistributedStrategy, we do loss scaling implicitly.
                self = _grad_scalar.scale(self)
306 307 308

            core.eager.run_backward([self], grad_tensor, retain_graph)

309 310
            if in_profiler_mode():
                record_event.end()
311 312
        else:
            raise ValueError(
313 314
                "Variable.backward() is only available in DyGraph mode"
            )
315 316

    @framework.dygraph_only
317 318
    @deprecated(
        since="2.1.0",
319
        level=1,
320
        reason="Please use tensor.grad, which returns the tensor value of the gradient.",
321
    )
322 323
    def gradient(self):
        """
324 325 326 327
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

328
        Get the Gradient of Current Tensor.
329 330

        Returns:
331
            ndarray: Numpy value of the gradient of current Tensor
332 333 334 335

        Examples:
            .. code-block:: python

336
                import paddle
337

338 339 340
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
341
                print("grad of x: {}".format(x.gradient()))
342
                # [500.]
343 344

        """
345 346 347 348 349
        if self.grad is None:
            return None
        if self.grad.is_selected_rows():
            return (np.array(self.grad), np.array(self.grad.rows()))
        return np.array(self.grad)
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
412 413
                "Cannot register hook on a tensor that stop gradient."
            )
414 415 416 417 418

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

419 420 421 422 423 424 425 426
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):
        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
427
            elif isinstance(
428 429 430 431 432 433 434 435 436
                device,
                (
                    core.CPUPlace,
                    core.CUDAPlace,
                    core.CUDAPinnedPlace,
                    core.XPUPlace,
                    core.CustomPlace,
                ),
            ):
437 438 439
                pass
            else:
                raise ValueError(
440
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace(), paddle.XPUPlace() or paddle.CustomPlace(), but the type of device is "
441 442
                    + type(device).__name__
                )
443 444 445 446 447

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
448 449
                blocking, bool
            ), "blocking value error, must be the True, False or None"
450 451 452 453 454 455

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
456 457
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
458 459 460

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
461
                size_dtype = core.size_of_dtype(dtype)
462 463 464 465
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
466 467
                    ((t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
                )
468
                gpu_memory_available = core.gpu_memory_available()
469 470 471 472 473 474 475 476 477 478 479 480 481
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
482
                with paddle.fluid.framework._dygraph_place_guard(
483 484
                    place=t_used.place
                ):
485
                    t_casted = t_used.cast(dtype=dtype)
486 487 488 489
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
490 491 492 493
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
494 495 496 497 498 499 500 501 502 503 504 505

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

506 507 508
    @property
    def grad(self):
        """
509
        .. warning::
C
chenjian 已提交
510
          This API will return the tensor value of the gradient. If you want
511 512 513 514 515 516 517 518 519 520 521
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
522

523 524 525 526
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
527
                # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=False, 500.)
528 529

        """
530 531 532 533
        msg = (
            'tensor.grad will return the tensor value of the gradient.'
            ' This is an incompatible upgrade for tensor.grad API. '
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. '
534
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
535
        )
536
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
537 538 539
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
540
        warnings.warn(warning_msg)
541
        return self._grad_ivar()
542

543 544 545 546 547 548
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

549 550
    def item(self, *args):
        """
C
chenjian 已提交
551
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a
552
        single-element Tensor.
553 554 555 556 557 558 559 560 561

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
C
chenjian 已提交
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
589 590 591 592
        scalar = self._getitem_from_offset(*args)
        if scalar.dtype == np.uint16:
            return convert_uint16_to_float(scalar).item()
        return scalar.item()
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

615 616
    def __str__(self):
        """
W
wanghuancoder 已提交
617
        Convert a Tensor object to a readable string.
618

619
        Returns(str): A readable string.
620 621 622 623

        Examples:
            .. code-block:: python

624
                import paddle
625
                x = paddle.rand([2, 5])
626
                print(x)
C
chenjian 已提交
627

628 629 630
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
631
        """
W
wanghuancoder 已提交
632
        from paddle.tensor.to_string import tensor_to_string
633

W
wanghuancoder 已提交
634
        return tensor_to_string(self)
635

636 637 638 639 640 641 642 643 644 645 646
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
C
chenjian 已提交
647

648
                print(x)
649 650
                # Tensor(shape=[], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        2.)
651 652

                print(y)
653 654
                # Tensor(shape=[], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        2.)
655 656 657 658 659 660

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
661 662 663 664 665
        new_tensor = core.eager.Tensor()
        new_tensor.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_tensor
        new_tensor.copy_(self, True)
        return new_tensor
666

667 668 669
    @property
    def block(self):
        return framework.default_main_program().global_block()
670

671
    def __nonzero__(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
672 673
        # np.prod([]) -> np.float64, so use int
        numel = int(np.prod(self.shape))
674 675 676
        assert (
            numel == 1
        ), "When Variable is used as the condition of if/while , Variable can only contain one element."
677 678
        assert self._is_initialized(), "tensor not initialized"
        return bool(np.array(self) > 0)
679 680 681 682

    def __bool__(self):
        return self.__nonzero__()

683
    def __array__(self, dtype=None):
684 685
        """
        Returns a numpy array shows the value of current Tensor.
C
chenjian 已提交
686

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
704
        array = self.numpy(False)
705 706 707
        if dtype:
            array = array.astype(dtype)
        return array
708

W
WeiXin 已提交
709
    def contain_tensor(item):
710
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
711 712 713 714
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
715 716 717 718 719
                if (
                    isinstance(slice_item.start, Variable)
                    or isinstance(slice_item.stop, Variable)
                    or isinstance(slice_item.step, Variable)
                ):
W
WeiXin 已提交
720 721
                    return True
            else:
722 723 724 725
                if (
                    isinstance(slice_item, (Variable, np.ndarray))
                    and Variable.dtype != paddle.bool
                ):
W
WeiXin 已提交
726 727 728
                    return True
        return False

729
    def __getitem__(self, item):
W
WeiXin 已提交
730 731 732 733 734 735
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
736 737 738
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
739
                return True
740

W
WeiXin 已提交
741 742 743 744 745 746 747 748
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
749 750 751 752 753 754 755 756
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
757
    def __setitem__(self, item, value):
Z
zyfncg 已提交
758 759 760
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
761

Z
zyfncg 已提交
762 763 764 765 766 767 768 769
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
792 793
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
794 795 796
            return _setitem_impl_(self, item, value)

        else:
797
            return self.__setitem_eager_tensor__(item, value)
W
WeiXin 已提交
798

799 800 801 802
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
803
            self._unset_fake_empty()
804 805
        else:
            raise TypeError(
806 807
                "_set_grad_ivar is only supported for Parameter Tensor"
            )
808

809 810 811 812
    @framework.dygraph_only
    def value(self):
        return self

J
Jiabin Yang 已提交
813 814 815 816 817 818 819 820
    @framework.dygraph_only
    def _slice(self, begin_idx, end_idx):
        return core.eager.Tensor(self.get_tensor()._slice(begin_idx, end_idx))

    @framework.dygraph_only
    def _numel(self):
        return self.get_tensor()._numel()

B
Baibaifan 已提交
821 822 823 824
    @framework.dygraph_only
    def _clear_data(self):
        self.get_tensor()._clear()

825
    @framework.dygraph_only
826 827
    def _use_gpudnn(self, use_gpudnn=True):
        return self._tensor_use_gpudnn(use_gpudnn)
828

829 830
    @framework.dygraph_only
    def _uva(self, device_id=0):
W
Weilong Wu 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
        '''
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
        '''
846 847
        self._tensor_uva(device_id)

J
Jiabin Yang 已提交
848 849 850 851 852 853 854 855 856 857 858
    @framework.dygraph_only
    def cpu(self):
        if self.place.is_cpu_place():
            return self
        else:
            res = self._copy_to(core.CPUPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

    @framework.dygraph_only
859
    def cuda(self, device_id=None, blocking=True):
860
        if device_id is None:
861 862 863 864 865 866 867 868 869
            res_place = framework._current_expected_place()
            if not isinstance(res_place, core.CUDAPlace):
                res_place = core.CUDAPlace(0)
        elif isinstance(device_id, int):
            res_place = core.CUDAPlace(device_id)
        else:
            raise ValueError("device_id must be int|None")

        if self.place._equals(res_place):
J
Jiabin Yang 已提交
870 871
            return self
        else:
872
            res = self._copy_to(res_place, True)
J
Jiabin Yang 已提交
873 874 875 876
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

W
wanghuancoder 已提交
877 878 879 880 881 882 883 884 885 886
    @framework.dygraph_only
    def pin_memory(self):
        if self.place.is_cuda_pinned_place():
            return self
        else:
            res = self._copy_to(core.CUDAPinnedPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

887 888
    @framework.dygraph_only
    def values(self):
Z
zhangkaihuo 已提交
889 890 891 892 893 894 895 896 897 898 899 900
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Get the values of current SparseTensor(COO or CSR).

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
901 902 903 904 905 906
                indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                values = [1, 2, 3, 4, 5]
                dense_shape = [3, 4]
                sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int32'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
                print(sparse_x.values())
                #[1, 2, 3, 4, 5]
Z
zhangkaihuo 已提交
907
        """
908
        return _C_ops.sparse_values(self)
909 910 911

    @framework.dygraph_only
    def to_dense(self):
Z
zhangkaihuo 已提交
912 913 914 915 916 917 918 919 920 921 922 923
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current SparseTensor(COO or CSR) to DenseTensor.

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
924 925 926 927 928 929 930 931
                indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                values = [1, 2, 3, 4, 5]
                dense_shape = [3, 4]
                sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int64'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
                dense_x = sparse_x.to_dense()
                #[[0., 1., 0., 2.],
                # [0., 0., 3., 0.],
                # [4., 5., 0., 0.]]
Z
zhangkaihuo 已提交
932 933
        """

934
        return _C_ops.sparse_to_dense(self)
935 936 937

    @framework.dygraph_only
    def to_sparse_coo(self, sparse_dim):
Z
zhangkaihuo 已提交
938 939 940 941 942 943 944 945 946 947 948 949
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current DenseTensor to SparseTensor in COO format.

        Returns:
            Tensor: A SparseCooTensor

        Examples:
            .. code-block:: python

                import paddle
950 951 952 953 954 955
                dense_x = [[0, 1, 0, 2], [0, 0, 3, 4]]
                dense_x = paddle.to_tensor(dense_x, dtype='float32')
                sparse_x = dense_x.to_sparse_coo(sparse_dim=2)
                #indices=[[0, 0, 1, 1],
                #         [1, 3, 2, 3]],
                #values=[1., 2., 3., 4.]
Z
zhangkaihuo 已提交
956 957
        """

958
        return _C_ops.sparse_to_sparse_coo(self, sparse_dim)
959

960 961 962
    def __hash__(self):
        return hash(id(self))

963
    if not hasattr(core, "eager"):
964 965
        return

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
    for method_name, method in (
        ("__bool__", __bool__),
        ("__nonzero__", __nonzero__),
        ("_to_static_var", _to_static_var),
        ("set_value", set_value),
        ("block", block),
        ("backward", backward),
        ("clear_grad", clear_grad),
        ("inplace_version", inplace_version),
        ("gradient", gradient),
        ("register_hook", register_hook),
        ("__str__", __str__),
        ("__repr__", __str__),
        ("__deepcopy__", __deepcopy__),
        ("__module__", "paddle"),
        ("__array__", __array__),
        ("__getitem__", __getitem__),
        ("item", item),
        ("__setitem__", __setitem__),
        ("_to", _to),
        ("values", values),
        ("to_dense", to_dense),
        ("to_sparse_coo", to_sparse_coo),
989 990 991 992 993 994 995 996 997 998 999
        ("_set_grad_ivar", _set_grad_ivar),
        ("value", value),
        ("cpu", cpu),
        ("cuda", cuda),
        ("pin_memory", pin_memory),
        ("_slice", _slice),
        ("_numel", _numel),
        ("_uva", _uva),
        ("_clear_data", _clear_data),
        ("__hash__", __hash__),
        ("_use_gpudnn", _use_gpudnn),
1000
    ):
W
wanghuancoder 已提交
1001 1002
        setattr(core.eager.Tensor, method_name, method)

1003 1004 1005 1006 1007
    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
1008
        origin = getattr(core.VarDesc.VarType, "__str__")
1009 1010 1011

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
1012 1013 1014
                numpy_dtype = _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
                if numpy_dtype == 'uint16':
                    numpy_dtype = 'bfloat16'
1015
                prefix = 'paddle.'
1016
                return prefix + numpy_dtype
1017 1018 1019
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
L
Leo Chen 已提交
1020

1021
        setattr(core.VarDesc.VarType, "__str__", dtype_str)
1022
        _already_patch_repr = True
L
Leo Chen 已提交
1023

1024 1025
    # patch math methods for tensor
    monkey_patch_math_tensor()