tensor_patch_methods.py 34.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22
from .. import framework
姜永久 已提交
23
from ..framework import convert_np_dtype_to_dtype_
24
from .. import core
25
from .. import unique_name
26 27 28 29 30 31 32 33
from ..framework import (
    Variable,
    Parameter,
    _getitem_impl_,
    _setitem_impl_,
    EagerParamBase,
    in_dygraph_mode,
)
34
from .base import switch_to_static_graph
35
from .math_op_patch import monkey_patch_math_tensor
36 37 38 39
from paddle.fluid.data_feeder import (
    convert_uint16_to_float,
    _PADDLE_DTYPE_2_NUMPY_DTYPE,
)
40
import paddle.utils.deprecated as deprecated
C
chenjian 已提交
41
import paddle.profiler as profiler
42
from paddle.profiler.utils import in_profiler_mode
43
from paddle import _C_ops, _legacy_C_ops
44
from paddle.device import get_all_custom_device_type
45
from paddle.fluid.framework import _global_flags
46

47 48
_grad_scalar = None

49

50
class TensorHookRemoveHelper:
51 52
    """
    A helper class that for removing Tensor gradient's hook.
53
    NOTE(wuweilong):the operation weakref.ref(tensor) will cause some unexpected errors in eager mode.
54 55 56
    """

    def __init__(self, tensor, hook_id):
57
        self._tensor = tensor
58 59 60 61 62 63 64 65 66
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
67
        tensor = self._tensor
68 69 70 71 72 73 74
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
75 76 77
                    % (self._hook_id, tensor.name),
                    RuntimeWarning,
                )
78 79 80
        return False


81 82 83
_already_patch_repr = False


84
def monkey_patch_tensor():
85 86 87 88 89 90
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

W
wanghuancoder 已提交
91
        Transform a Tensor into static Variable with same attributes. It's a low level interface used
92 93 94
        in dy2static and shall not be called directly.

        Args:
W
wanghuancoder 已提交
95 96
            to_parameter (bool): It takes effect only if the input a Tensor. If set True,
                                 the Tensor will be converted into framework.Parameters. Otherwise, it will
97 98 99 100 101 102 103 104 105 106 107
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
108 109
                    tensor = to_variable(data)
                    static_var = tensor._to_static_var()
110 111

        """
112

113
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
114
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
115
        attr_not_need_keys = ['grad', 'T', 'place', '_place_str']
116
        param_keys = ['stop_gradient', 'trainable']
W
wanghuancoder 已提交
117
        if isinstance(self, EagerParamBase):
118
            attr_kwargs = self.__dict__.copy()
119 120
            for key in param_keys:
                attr_kwargs[key] = getattr(self, key)
121
        else:
122 123
            attr_names = []
            for name in dir(self):
124
                if name not in attr_not_need_keys:
125 126 127
                    if not inspect.ismethod(
                        getattr(self, name)
                    ) and not name.startswith('_'):
128
                        attr_names.append(name)
129 130 131 132 133 134
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

135 136 137 138
        # If specify block, use it instead of self.block
        if 'block' in kwargs:
            attr_kwargs['block'] = kwargs['block']

139 140
        attr_kwargs.update(kwargs)

W
wanghuancoder 已提交
141
        if to_parameter or isinstance(self, EagerParamBase):
142
            del attr_kwargs['persistable']
143 144
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
145 146 147 148 149
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

150 151 152 153 154
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
155
            **This API is ONLY available in Dygraph mode**
156 157 158 159 160 161 162 163 164 165 166

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
167
                from paddle.nn import Linear
168 169
                import numpy as np

170
                data = np.ones([3, 1024], dtype='float32')
171
                with fluid.dygraph.guard():
172
                    linear = Linear(1024, 4)
173
                    t = to_variable(data)
174
                    linear(t)  # call with default weight
175
                    custom_weight = np.random.randn(1024, 4).astype("float32")
176 177
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
178 179

        """
W
wanghuancoder 已提交
180
        base_tensor = core.eager.Tensor
181 182
        assert isinstance(
            value, (np.ndarray, base_tensor, dict, str)
W
wanghuancoder 已提交
183
        ), "Variable set_value function, arguments type only support Variable, numpy, Tensor, dict, string."
S
Steffy-zxf 已提交
184 185 186 187 188

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
189 190
                self.name, len(self), len(value)
            )
S
Steffy-zxf 已提交
191 192 193 194 195
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
196 197 198 199 200
            assert self.shape == list(
                value.shape
            ), "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                self.name, self.shape, value.shape
            )
C
crystal 已提交
201 202 203 204 205

            if isinstance(value, base_tensor):
                dtype = value.dtype
            else:
                dtype = convert_np_dtype_to_dtype_(value.dtype)
206

207 208 209 210 211
            assert (
                self.dtype == dtype
            ), "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                self.name, self.dtype, dtype
            )
212

W
wanghuancoder 已提交
213
            # NOTE(wuweilong): self could be Tensor, the subsequent behavior are defined in different files
214
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
215
            # this Interface behavior will be unifed in the future.
216 217 218
            self.value().get_tensor().set(
                value, framework._current_expected_place()
            )
219 220

    @framework.dygraph_only
221
    def backward(self, grad_tensor=None, retain_graph=False):
222
        """
223
        Run backward of current Graph which starts from current Tensor.
224

225
        The new gradient will accumulate on previous gradient.
226 227 228

        You can clear gradient by ``Tensor.clear_grad()`` .

229
        Args:
C
chenjian 已提交
230 231
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None,
            the initial gradient values of the current Tensor would be Tensor filled with 1.0;
232
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
233
            The default value is None.
234

235
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
236
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
237
                :code:`retain_graph` to True, then the grads will be retained. Thus, setting it to False is much more memory-efficient.
238
                Defaults to False.
239 240 241 242 243 244
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

245
                import paddle
246 247 248 249 250 251 252 253 254 255 256 257 258 259
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
260

261 262 263 264 265 266 267 268 269 270 271
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

272
        """
273
        if framework.in_dygraph_mode():
274 275
            if in_profiler_mode():
                record_event = profiler.RecordEvent(
276 277
                    "Gradient Backward", profiler.TracerEventType.Backward
                )
278
                record_event.begin()
279
            if grad_tensor is not None:
280 281 282 283
                assert isinstance(
                    grad_tensor, core.eager.Tensor
                ), "The type of grad_tensor must be paddle.Tensor"

284 285 286 287 288
                assert (
                    grad_tensor.shape == self.shape
                ), "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape
                )
289

290 291 292 293
            if grad_tensor is None:
                grad_tensor = []
            else:
                grad_tensor = [grad_tensor]
294 295 296
            if _grad_scalar:
                # When using amp with Fleet DistributedStrategy, we do loss scaling implicitly.
                self = _grad_scalar.scale(self)
297 298 299

            core.eager.run_backward([self], grad_tensor, retain_graph)

300 301
            if in_profiler_mode():
                record_event.end()
302 303
        else:
            raise ValueError(
304 305
                "Variable.backward() is only available in DyGraph mode"
            )
306 307

    @framework.dygraph_only
308 309
    @deprecated(
        since="2.1.0",
310
        level=1,
311
        reason="Please use tensor.grad, which returns the tensor value of the gradient.",
312
    )
313 314
    def gradient(self):
        """
315 316 317 318
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

319
        Get the Gradient of Current Tensor.
320 321

        Returns:
322
            ndarray: Numpy value of the gradient of current Tensor
323 324 325 326

        Examples:
            .. code-block:: python

327
                import paddle
328

329 330 331
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
332
                print("grad of x: {}".format(x.gradient()))
333
                # [500.]
334 335

        """
336 337 338 339 340
        if self.grad is None:
            return None
        if self.grad.is_selected_rows():
            return (np.array(self.grad), np.array(self.grad.rows()))
        return np.array(self.grad)
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
403 404
                "Cannot register hook on a tensor that stop gradient."
            )
405 406 407 408 409

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

410 411 412 413 414 415 416 417
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):
        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
418
            elif isinstance(
419 420 421 422 423 424 425 426 427
                device,
                (
                    core.CPUPlace,
                    core.CUDAPlace,
                    core.CUDAPinnedPlace,
                    core.XPUPlace,
                    core.CustomPlace,
                ),
            ):
428 429 430
                pass
            else:
                raise ValueError(
431
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace(), paddle.XPUPlace() or paddle.CustomPlace(), but the type of device is "
432 433
                    + type(device).__name__
                )
434 435 436 437 438

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
439 440
                blocking, bool
            ), "blocking value error, must be the True, False or None"
441 442 443 444 445 446

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
447 448
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
449 450 451

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
452
                size_dtype = core.size_of_dtype(dtype)
453 454 455 456
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
457 458
                    ((t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
                )
459
                gpu_memory_available = core.gpu_memory_available()
460 461 462 463 464 465 466 467 468 469 470 471 472
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
473
                with paddle.fluid.framework._dygraph_place_guard(
474 475
                    place=t_used.place
                ):
476
                    t_casted = t_used.cast(dtype=dtype)
477 478 479 480
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
481 482 483 484
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
485 486 487 488 489 490 491 492 493 494 495 496

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

497 498 499
    @property
    def grad(self):
        """
500
        .. warning::
C
chenjian 已提交
501
          This API will return the tensor value of the gradient. If you want
502 503 504 505 506 507 508 509 510 511 512
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
513

514 515 516 517
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
518
                # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=False, 500.)
519 520

        """
521 522 523 524
        msg = (
            'tensor.grad will return the tensor value of the gradient.'
            ' This is an incompatible upgrade for tensor.grad API. '
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. '
525
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
526
        )
527
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
528 529 530
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
531
        warnings.warn(warning_msg)
532
        return self._grad_ivar()
533

534 535 536 537 538 539
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

540 541
    def item(self, *args):
        """
C
chenjian 已提交
542
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a
543
        single-element Tensor.
544 545 546 547 548 549 550 551 552

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
C
chenjian 已提交
553

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
580 581 582 583
        scalar = self._getitem_from_offset(*args)
        if scalar.dtype == np.uint16:
            return convert_uint16_to_float(scalar).item()
        return scalar.item()
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

606 607
    def __str__(self):
        """
W
wanghuancoder 已提交
608
        Convert a Tensor object to a readable string.
609

610
        Returns(str): A readable string.
611 612 613 614

        Examples:
            .. code-block:: python

615
                import paddle
616
                x = paddle.rand([2, 5])
617
                print(x)
C
chenjian 已提交
618

619 620 621
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
622
        """
W
wanghuancoder 已提交
623
        from paddle.tensor.to_string import tensor_to_string
624

W
wanghuancoder 已提交
625
        return tensor_to_string(self)
626

627 628 629 630 631 632 633 634 635 636 637
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
C
chenjian 已提交
638

639
                print(x)
640 641
                # Tensor(shape=[], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        2.)
642 643

                print(y)
644 645
                # Tensor(shape=[], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        2.)
646 647 648 649 650 651

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
652 653 654 655 656
        new_tensor = core.eager.Tensor()
        new_tensor.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_tensor
        new_tensor.copy_(self, True)
        return new_tensor
657

658 659 660
    @property
    def block(self):
        return framework.default_main_program().global_block()
661

662
    def __nonzero__(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
663 664
        # np.prod([]) -> np.float64, so use int
        numel = int(np.prod(self.shape))
665 666 667
        assert (
            numel == 1
        ), "When Variable is used as the condition of if/while , Variable can only contain one element."
668 669
        assert self._is_initialized(), "tensor not initialized"
        return bool(np.array(self) > 0)
670 671 672 673

    def __bool__(self):
        return self.__nonzero__()

674
    def __array__(self, dtype=None):
675 676
        """
        Returns a numpy array shows the value of current Tensor.
C
chenjian 已提交
677

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
695
        array = self.numpy(False)
696 697 698
        if dtype:
            array = array.astype(dtype)
        return array
699

W
WeiXin 已提交
700
    def contain_tensor(item):
701
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
702 703 704 705
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
706 707 708 709 710
                if (
                    isinstance(slice_item.start, Variable)
                    or isinstance(slice_item.stop, Variable)
                    or isinstance(slice_item.step, Variable)
                ):
W
WeiXin 已提交
711 712
                    return True
            else:
713 714 715 716
                if (
                    isinstance(slice_item, (Variable, np.ndarray))
                    and Variable.dtype != paddle.bool
                ):
W
WeiXin 已提交
717 718 719
                    return True
        return False

720
    def __getitem__(self, item):
W
WeiXin 已提交
721 722 723 724 725 726
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
727 728 729
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
730
                return True
731

W
WeiXin 已提交
732 733 734 735 736 737 738 739
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
740 741 742 743 744 745 746 747
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
748
    def __setitem__(self, item, value):
Z
zyfncg 已提交
749 750 751
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
752

Z
zyfncg 已提交
753 754 755 756 757 758 759 760
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
783 784
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
785 786 787
            return _setitem_impl_(self, item, value)

        else:
788
            return self.__setitem_eager_tensor__(item, value)
W
WeiXin 已提交
789

790 791 792 793
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
794
            self._unset_fake_empty()
795 796
        else:
            raise TypeError(
797 798
                "_set_grad_ivar is only supported for Parameter Tensor"
            )
799

800 801 802 803
    @framework.dygraph_only
    def value(self):
        return self

J
Jiabin Yang 已提交
804 805 806 807 808 809 810 811
    @framework.dygraph_only
    def _slice(self, begin_idx, end_idx):
        return core.eager.Tensor(self.get_tensor()._slice(begin_idx, end_idx))

    @framework.dygraph_only
    def _numel(self):
        return self.get_tensor()._numel()

B
Baibaifan 已提交
812 813 814 815
    @framework.dygraph_only
    def _clear_data(self):
        self.get_tensor()._clear()

816
    @framework.dygraph_only
817 818
    def _use_gpudnn(self, use_gpudnn=True):
        return self._tensor_use_gpudnn(use_gpudnn)
819

820 821
    @framework.dygraph_only
    def _uva(self, device_id=0):
W
Weilong Wu 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
        '''
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
        '''
837 838
        self._tensor_uva(device_id)

J
Jiabin Yang 已提交
839 840 841 842 843 844 845 846 847 848 849
    @framework.dygraph_only
    def cpu(self):
        if self.place.is_cpu_place():
            return self
        else:
            res = self._copy_to(core.CPUPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

    @framework.dygraph_only
850
    def cuda(self, device_id=None, blocking=True):
851
        if device_id is None:
852 853 854 855 856 857 858 859 860
            res_place = framework._current_expected_place()
            if not isinstance(res_place, core.CUDAPlace):
                res_place = core.CUDAPlace(0)
        elif isinstance(device_id, int):
            res_place = core.CUDAPlace(device_id)
        else:
            raise ValueError("device_id must be int|None")

        if self.place._equals(res_place):
J
Jiabin Yang 已提交
861 862
            return self
        else:
863
            res = self._copy_to(res_place, True)
J
Jiabin Yang 已提交
864 865 866 867
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

W
wanghuancoder 已提交
868 869 870 871 872 873 874 875 876 877
    @framework.dygraph_only
    def pin_memory(self):
        if self.place.is_cuda_pinned_place():
            return self
        else:
            res = self._copy_to(core.CUDAPinnedPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

878 879
    @framework.dygraph_only
    def values(self):
Z
zhangkaihuo 已提交
880 881 882 883 884 885 886 887 888 889 890 891
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Get the values of current SparseTensor(COO or CSR).

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
892 893 894 895 896 897
                indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                values = [1, 2, 3, 4, 5]
                dense_shape = [3, 4]
                sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int32'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
                print(sparse_x.values())
                #[1, 2, 3, 4, 5]
Z
zhangkaihuo 已提交
898
        """
899
        return _C_ops.sparse_values(self)
900 901 902

    @framework.dygraph_only
    def to_dense(self):
Z
zhangkaihuo 已提交
903 904 905 906 907 908 909 910 911 912 913 914
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current SparseTensor(COO or CSR) to DenseTensor.

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
915 916 917 918 919 920 921 922
                indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                values = [1, 2, 3, 4, 5]
                dense_shape = [3, 4]
                sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int64'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
                dense_x = sparse_x.to_dense()
                #[[0., 1., 0., 2.],
                # [0., 0., 3., 0.],
                # [4., 5., 0., 0.]]
Z
zhangkaihuo 已提交
923 924
        """

925
        return _C_ops.sparse_to_dense(self)
926 927 928

    @framework.dygraph_only
    def to_sparse_coo(self, sparse_dim):
Z
zhangkaihuo 已提交
929 930 931 932 933 934 935 936 937 938 939 940
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current DenseTensor to SparseTensor in COO format.

        Returns:
            Tensor: A SparseCooTensor

        Examples:
            .. code-block:: python

                import paddle
941 942 943 944 945 946
                dense_x = [[0, 1, 0, 2], [0, 0, 3, 4]]
                dense_x = paddle.to_tensor(dense_x, dtype='float32')
                sparse_x = dense_x.to_sparse_coo(sparse_dim=2)
                #indices=[[0, 0, 1, 1],
                #         [1, 3, 2, 3]],
                #values=[1., 2., 3., 4.]
Z
zhangkaihuo 已提交
947 948
        """

949
        return _C_ops.sparse_to_sparse_coo(self, sparse_dim)
950

951 952 953
    def __hash__(self):
        return hash(id(self))

954
    if not hasattr(core, "eager"):
955 956
        return

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
    for method_name, method in (
        ("__bool__", __bool__),
        ("__nonzero__", __nonzero__),
        ("_to_static_var", _to_static_var),
        ("set_value", set_value),
        ("block", block),
        ("backward", backward),
        ("clear_grad", clear_grad),
        ("inplace_version", inplace_version),
        ("gradient", gradient),
        ("register_hook", register_hook),
        ("__str__", __str__),
        ("__repr__", __str__),
        ("__deepcopy__", __deepcopy__),
        ("__module__", "paddle"),
        ("__array__", __array__),
        ("__getitem__", __getitem__),
        ("item", item),
        ("__setitem__", __setitem__),
        ("_to", _to),
        ("values", values),
        ("to_dense", to_dense),
        ("to_sparse_coo", to_sparse_coo),
980 981 982 983 984 985 986 987 988 989 990
        ("_set_grad_ivar", _set_grad_ivar),
        ("value", value),
        ("cpu", cpu),
        ("cuda", cuda),
        ("pin_memory", pin_memory),
        ("_slice", _slice),
        ("_numel", _numel),
        ("_uva", _uva),
        ("_clear_data", _clear_data),
        ("__hash__", __hash__),
        ("_use_gpudnn", _use_gpudnn),
991
    ):
W
wanghuancoder 已提交
992 993
        setattr(core.eager.Tensor, method_name, method)

994 995 996 997 998
    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
999
        origin = getattr(core.VarDesc.VarType, "__str__")
1000 1001 1002

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
1003 1004 1005
                numpy_dtype = _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
                if numpy_dtype == 'uint16':
                    numpy_dtype = 'bfloat16'
1006
                prefix = 'paddle.'
1007
                return prefix + numpy_dtype
1008 1009 1010
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
L
Leo Chen 已提交
1011

1012
        setattr(core.VarDesc.VarType, "__str__", dtype_str)
1013
        _already_patch_repr = True
L
Leo Chen 已提交
1014

1015 1016
    # patch math methods for tensor
    monkey_patch_math_tensor()