elementwise_add_op.h 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

F
fengjiayi 已提交
15 16
#pragma once

17 18
#include <algorithm>
#include <utility>
W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
20

21
#include "paddle/pten/kernels/math_kernel.h"
22

G
gongweibao 已提交
23 24 25
namespace paddle {
namespace operators {

26
template <typename DeviceContext, typename T>
27 28 29 30
void LaunchBroadcastElementwiseCpuKernel(const framework::ExecutionContext &ctx,
                                         const framework::Tensor *x,
                                         const framework::Tensor *y,
                                         framework::Tensor *z) {
31
  int axis = ctx.Attr<int>("axis");
32 33 34
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
35 36 37 38 39 40
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          AddFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseAddFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseAddFunctor<T>(), z);
  }
41 42
}

43 44 45 46 47 48
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseAdd {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z);
};
49

Q
QI JUN 已提交
50
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
51
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
52
 public:
C
chengduo 已提交
53 54 55 56
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
57
    z->mutable_data<T>(ctx.GetPlace());
58 59 60 61 62 63

    auto &dev_ctx = ctx.device_context<DeviceContext>();
    int axis = ctx.Attr<int>("axis");
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);
W
Wilber 已提交
64 65 66 67
    pten::AddKernel<T>(
        static_cast<const typename framework::ConvertToPtenContext<
            DeviceContext>::TYPE &>(dev_ctx),
        *pt_x.get(), *pt_y.get(), axis, pt_z.get());
G
gongweibao 已提交
68 69 70 71
  }
};

template <typename T>
Y
Yu Yang 已提交
72 73
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
74 75
};

76
template <typename DeviceContext, typename T>
77 78 79 80 81 82 83 84
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
default_elementwise_add_grad(const framework::ExecutionContext &ctx,
                             const framework::Tensor *x,
                             const framework::Tensor *y,
                             const framework::Tensor *out,
                             const framework::Tensor *dout,
                             framework::Tensor *dx, framework::Tensor *dy) {
85 86
  int axis = ctx.Attr<int>("axis");

87 88 89 90
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
91 92
}

93
template <typename DeviceContext, typename T>
94 95 96
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
97 98 99 100 101
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
102 103 104 105 106 107 108 109 110 111 112 113
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

114
template <typename DeviceContext, typename T>
115
typename std::enable_if<
116 117
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
118 119 120 121 122 123
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
124 125
}

126
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
127 128 129 130
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
131 132 133 134 135
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy);
136 137 138 139 140 141 142 143 144 145

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
default_elementwise_add_grad(const framework::ExecutionContext &ctx,
                             const framework::Tensor *x,
                             const framework::Tensor *y,
                             const framework::Tensor *out,
                             const framework::Tensor *dout,
                             framework::Tensor *dx, framework::Tensor *dy);
146 147
#endif

Q
QI JUN 已提交
148
template <typename DeviceContext, typename T>
149
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
150
 public:
C
chengduo 已提交
151
  void Compute(const framework::ExecutionContext &ctx) const override {
152 153
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
154 155
    using Tensor = framework::Tensor;

156 157
    auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Input<Tensor>("Y");
C
chengduo 已提交
158 159 160
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
161
    // skip out
C
chengduo 已提交
162
    auto *out = dout;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177
    // Special case when dy is not needed and dx doesn't reduce
    if (dx != nullptr && dy == nullptr && dx->dims() == dout->dims()) {
      VLOG(4) << "Special case when dy is not needed and dx doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dx);
    } else if (dx == nullptr && dy != nullptr && dy->dims() == dout->dims()) {
      VLOG(4) << "Special case when dx is not needed and dy doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dy);
    } else if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
178
      elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
179
    } else {
180 181
      default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
182
    }
G
gongweibao 已提交
183 184 185
  }
};

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
template <typename DeviceContext, typename T>
class ElementwiseAddDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;

    auto *y = ctx.Input<Tensor>("Y");
    auto *dout = ctx.Input<Tensor>("DOut");
    auto *ddx = ctx.Input<Tensor>("DDX");
    auto *ddy = ctx.Input<Tensor>("DDY");

    auto *ddout = ctx.Output<Tensor>("DDOut");

    // ddOut = ddx + ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
206 207
      LaunchBroadcastElementwiseCpuKernel<DeviceContext, T>(ctx, &ddx_safe,
                                                            &ddy_safe, ddout);
208 209 210 211
    }
  }
};

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
template <typename DeviceContext, typename T>
class ElementwiseAddTripleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;
    auto *ddx = ctx.Input<Tensor>("DDX");
    auto *ddy = ctx.Input<Tensor>("DDY");
    auto *d_ddout = ctx.Input<Tensor>("D_DDOut");
    auto *d_ddx = ctx.Output<Tensor>("D_DDX");
    auto *d_ddy = ctx.Output<Tensor>("D_DDY");
    // skip out
    auto *out = d_ddout;

    // Special case when d_ddy is not needed and d_ddx doesn't reduce
    if (d_ddx != nullptr && d_ddy == nullptr &&
        d_ddx->dims() == d_ddout->dims()) {
      VLOG(4) << "Special case when d_ddy is not needed and d_ddx doesn't "
                 "reduce";
      framework::TensorCopy(
          *d_ddout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), d_ddx);
    } else if (d_ddx == nullptr && d_ddy != nullptr &&
               d_ddy->dims() == d_ddout->dims()) {
      VLOG(4) << "Special case when d_ddx is not needed and d_ddy doesn't "
                 "reduce";
      framework::TensorCopy(
          *d_ddout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), d_ddy);
    } else if (d_ddx != nullptr && d_ddy != nullptr &&
               (d_ddx->dims() == d_ddy->dims())) {
      elementwise_add_grad<DeviceContext, T>(ctx, ddx, ddy, out, d_ddout, d_ddx,
                                             d_ddy);
    } else {
      default_elementwise_add_grad<DeviceContext, T>(ctx, ddx, ddy, out,
                                                     d_ddout, d_ddx, d_ddy);
    }
  }
};

G
gongweibao 已提交
251 252
}  // namespace operators
}  // namespace paddle