tensor_formatter.cc 5.2 KB
Newer Older
H
Huihuang Zheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

W
wanghuancoder 已提交
15
#include "paddle/fluid/operators/tensor_formatter.h"
H
Huihuang Zheng 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
#include <algorithm>
#include <string>

namespace paddle {
namespace operators {

void TensorFormatter::SetPrintTensorType(bool print_tensor_type) {
  print_tensor_type_ = print_tensor_type;
}

void TensorFormatter::SetPrintTensorShape(bool print_tensor_shape) {
  print_tensor_shape_ = print_tensor_shape;
}

void TensorFormatter::SetPrintTensorLod(bool print_tensor_lod) {
  print_tensor_lod_ = print_tensor_lod;
}

void TensorFormatter::SetPrintTensorLayout(bool print_tensor_layout) {
  print_tensor_layout_ = print_tensor_layout;
}

void TensorFormatter::SetSummarize(int64_t summarize) {
  summarize_ = summarize;
}

void TensorFormatter::Print(const framework::LoDTensor& print_tensor,
                            const std::string& tensor_name,
                            const std::string& message) {
  static std::mutex mutex;
  std::lock_guard<std::mutex> lock(mutex);
  std::cout << Format(print_tensor, tensor_name, message);
}

std::string TensorFormatter::Format(const framework::LoDTensor& print_tensor,
                                    const std::string& tensor_name,
                                    const std::string& message) {
  std::stringstream log_stream;
  if (!tensor_name.empty()) {
    log_stream << "Variable: " << tensor_name << std::endl;
  }

  if (!message.empty()) {
    log_stream << "  - message: " << message << std::endl;
  }

  if (print_tensor_lod_) {
    log_stream << "  - lod: {";
    const framework::LoD& lod = print_tensor.lod();
    for (auto level : lod) {
      log_stream << "{";
      bool is_first = true;
      for (auto i : level) {
        if (is_first) {
          log_stream << i;
          is_first = false;
        } else {
          log_stream << ", " << i;
        }
      }
      log_stream << "}";
    }
    log_stream << "}" << std::endl;
  }

  log_stream << "  - place: " << print_tensor.place() << std::endl;

  if (print_tensor_shape_) {
    log_stream << "  - shape: " << print_tensor.dims().to_str() << std::endl;
  }

  if (print_tensor_layout_) {
    log_stream << "  - layout: "
               << framework::DataLayoutToString(print_tensor.layout())
               << std::endl;
  }

  std::type_index dtype = framework::ToTypeIndex(print_tensor.type());
  if (print_tensor_type_) {
    log_stream << "  - dtype: " << platform::demangle(dtype.name())
               << std::endl;
  }

  if (framework::IsType<const float>(dtype)) {
    FormatData<float>(print_tensor, log_stream);
  } else if (framework::IsType<const double>(dtype)) {
    FormatData<double>(print_tensor, log_stream);
  } else if (framework::IsType<const int>(dtype)) {
    FormatData<int>(print_tensor, log_stream);
  } else if (framework::IsType<const int64_t>(dtype)) {
    FormatData<int64_t>(print_tensor, log_stream);
  } else if (framework::IsType<const bool>(dtype)) {
    FormatData<bool>(print_tensor, log_stream);
  } else {
    log_stream << "  - data: unprintable type: " << dtype.name() << std::endl;
  }
  return log_stream.str();
}

template <typename T>
void TensorFormatter::FormatData(const framework::LoDTensor& print_tensor,
                                 std::stringstream& log_stream) {
  int64_t print_size = summarize_ == -1
                           ? print_tensor.numel()
                           : std::min(summarize_, print_tensor.numel());
  const T* data = nullptr;
  if (is_cpu_place(print_tensor.place())) {
    data = print_tensor.data<T>();
  } else {
    framework::LoDTensor cpu_tensor;
    platform::CPUPlace cpu_place;
    TensorCopy(print_tensor, cpu_place, &cpu_tensor);
L
Leo Chen 已提交
128 129 130 131 132
#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(print_tensor.place())) {
      platform::DeviceContextPool::Instance().Get(print_tensor.place())->Wait();
    }
#endif
H
Huihuang Zheng 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    data = cpu_tensor.data<T>();
  }

  log_stream << "  - data: [";
  if (print_size > 0) {
    log_stream << data[0];
    for (int64_t i = 1; i < print_size; ++i) {
      log_stream << " " << data[i];
    }
  }
  log_stream << "]" << std::endl;
}

template void TensorFormatter::FormatData<bool>(
    const framework::LoDTensor& print_tensor, std::stringstream& log_stream);
template void TensorFormatter::FormatData<float>(
    const framework::LoDTensor& print_tensor, std::stringstream& log_stream);
template void TensorFormatter::FormatData<double>(
    const framework::LoDTensor& print_tensor, std::stringstream& log_stream);
template void TensorFormatter::FormatData<int>(
    const framework::LoDTensor& print_tensor, std::stringstream& log_stream);
template void TensorFormatter::FormatData<int64_t>(
    const framework::LoDTensor& print_tensor, std::stringstream& log_stream);

}  // namespace operators
}  // namespace paddle