tensor_formatter.cc 5.1 KB
Newer Older
H
Huihuang Zheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <algorithm>
#include <string>

#include "paddle/fluid/operators/tensor_formatter.h"

namespace paddle {
namespace operators {

void TensorFormatter::SetPrintTensorType(bool print_tensor_type) {
  print_tensor_type_ = print_tensor_type;
}

void TensorFormatter::SetPrintTensorShape(bool print_tensor_shape) {
  print_tensor_shape_ = print_tensor_shape;
}

void TensorFormatter::SetPrintTensorLod(bool print_tensor_lod) {
  print_tensor_lod_ = print_tensor_lod;
}

void TensorFormatter::SetPrintTensorLayout(bool print_tensor_layout) {
  print_tensor_layout_ = print_tensor_layout;
}

void TensorFormatter::SetSummarize(int64_t summarize) {
  summarize_ = summarize;
}

void TensorFormatter::Print(const framework::LoDTensor& print_tensor,
                            const std::string& tensor_name,
                            const std::string& message) {
  static std::mutex mutex;
  std::lock_guard<std::mutex> lock(mutex);
  std::cout << Format(print_tensor, tensor_name, message);
}

std::string TensorFormatter::Format(const framework::LoDTensor& print_tensor,
                                    const std::string& tensor_name,
                                    const std::string& message) {
  std::stringstream log_stream;
  if (!tensor_name.empty()) {
    log_stream << "Variable: " << tensor_name << std::endl;
  }

  if (!message.empty()) {
    log_stream << "  - message: " << message << std::endl;
  }

  if (print_tensor_lod_) {
    log_stream << "  - lod: {";
    const framework::LoD& lod = print_tensor.lod();
    for (auto level : lod) {
      log_stream << "{";
      bool is_first = true;
      for (auto i : level) {
        if (is_first) {
          log_stream << i;
          is_first = false;
        } else {
          log_stream << ", " << i;
        }
      }
      log_stream << "}";
    }
    log_stream << "}" << std::endl;
  }

  log_stream << "  - place: " << print_tensor.place() << std::endl;

  if (print_tensor_shape_) {
    log_stream << "  - shape: " << print_tensor.dims().to_str() << std::endl;
  }

  if (print_tensor_layout_) {
    log_stream << "  - layout: "
               << framework::DataLayoutToString(print_tensor.layout())
               << std::endl;
  }

  std::type_index dtype = framework::ToTypeIndex(print_tensor.type());
  if (print_tensor_type_) {
    log_stream << "  - dtype: " << platform::demangle(dtype.name())
               << std::endl;
  }

  if (framework::IsType<const float>(dtype)) {
    FormatData<float>(print_tensor, log_stream);
  } else if (framework::IsType<const double>(dtype)) {
    FormatData<double>(print_tensor, log_stream);
  } else if (framework::IsType<const int>(dtype)) {
    FormatData<int>(print_tensor, log_stream);
  } else if (framework::IsType<const int64_t>(dtype)) {
    FormatData<int64_t>(print_tensor, log_stream);
  } else if (framework::IsType<const bool>(dtype)) {
    FormatData<bool>(print_tensor, log_stream);
  } else {
    log_stream << "  - data: unprintable type: " << dtype.name() << std::endl;
  }
  return log_stream.str();
}

template <typename T>
void TensorFormatter::FormatData(const framework::LoDTensor& print_tensor,
                                 std::stringstream& log_stream) {
  int64_t print_size = summarize_ == -1
                           ? print_tensor.numel()
                           : std::min(summarize_, print_tensor.numel());
  const T* data = nullptr;
  if (is_cpu_place(print_tensor.place())) {
    data = print_tensor.data<T>();
  } else {
    framework::LoDTensor cpu_tensor;
    platform::CPUPlace cpu_place;
    TensorCopy(print_tensor, cpu_place, &cpu_tensor);
    data = cpu_tensor.data<T>();
  }

  log_stream << "  - data: [";
  if (print_size > 0) {
    log_stream << data[0];
    for (int64_t i = 1; i < print_size; ++i) {
      log_stream << " " << data[i];
    }
  }
  log_stream << "]" << std::endl;
}

template void TensorFormatter::FormatData<bool>(
    const framework::LoDTensor& print_tensor, std::stringstream& log_stream);
template void TensorFormatter::FormatData<float>(
    const framework::LoDTensor& print_tensor, std::stringstream& log_stream);
template void TensorFormatter::FormatData<double>(
    const framework::LoDTensor& print_tensor, std::stringstream& log_stream);
template void TensorFormatter::FormatData<int>(
    const framework::LoDTensor& print_tensor, std::stringstream& log_stream);
template void TensorFormatter::FormatData<int64_t>(
    const framework::LoDTensor& print_tensor, std::stringstream& log_stream);

}  // namespace operators
}  // namespace paddle