test_model.py 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax
28 29
from paddle.fluid.dygraph.base import to_variable

30 31
import paddle.incubate.hapi as hapi
from paddle.incubate.hapi import Model, Input
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35 36
from paddle.incubate.hapi.datasets import MNIST
from paddle.incubate.hapi.vision.models import LeNet
from paddle.incubate.hapi.distributed import DistributedBatchSampler, prepare_distributed_context
37 38
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
39 40 41


class LeNetDygraph(fluid.dygraph.Layer):
42
    def __init__(self, num_classes=10, classifier_activation=None):
43 44 45
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
46
            Conv2d(
47
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
48
            ReLU(),
49
            Pool2D(2, 'max', 2),
50
            Conv2d(
51
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
52
            ReLU(),
53 54 55 56
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
57 58
                Linear(400, 120), Linear(120, 84), Linear(84, 10),
                Softmax())  #Todo: accept any activation
59 60 61 62 63 64 65 66 67 68

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
class LeNetDeclarative(fluid.dygraph.Layer):
    def __init__(self, num_classes=10, classifier_activation=None):
        super(LeNetDeclarative, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
            Conv2d(
                1, 6, 3, stride=1, padding=1),
            ReLU(),
            Pool2D(2, 'max', 2),
            Conv2d(
                6, 16, 5, stride=1, padding=0),
            ReLU(),
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
85 86
                Linear(400, 120), Linear(120, 84), Linear(84, 10),
                Softmax())  #Todo: accept any activation
87 88 89 90 91 92 93 94 95 96 97

    @declarative
    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
130
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
            self.skipTest('module not tested when ONLY_CPU compling')
157
        cls.device = hapi.set_device('gpu')
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
L
Leo Chen 已提交
174 175
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
176 177 178 179 180 181 182

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

183 184
        cls.inputs = [Input([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [Input([None, 1], 'int64', 'label')]
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

202 203 204 205 206 207
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

223
    def fit(self, dynamic, num_replicas=None, rank=None):
224 225
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
L
Leo Chen 已提交
226 227
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
228

229
        net = LeNet(classifier_activation=None)
230
        optim_new = fluid.optimizer.Adam(
231 232
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
233 234
        model.prepare(
            optim_new,
235
            loss=CrossEntropyLoss(reduction="sum"),
236
            metrics=Accuracy())
237 238 239 240 241 242
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
243 244 245 246 247
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
248
        val_sampler = DistributedBatchSampler(
249 250 251 252 253
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
272 273
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
293 294
        model = Model(LeNet(), self.inputs)
        model.prepare()
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None


317
class MyModel(fluid.dygraph.Layer):
318
    def __init__(self, classifier_activation='softmax'):
319
        super(MyModel, self).__init__()
320 321
        self._fc = Linear(20, 10)
        self._act = Softmax()  #Todo: accept any activation
322 323 324

    def forward(self, x):
        y = self._fc(x)
325
        y = self._act(y)
326 327 328 329 330
        return y


class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
L
Leo Chen 已提交
331 332
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
333 334 335 336 337 338 339 340 341

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
342
            m = MyModel(classifier_activation=None)
343 344 345 346
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
            output = m(to_variable(data))
347
            loss = CrossEntropyLoss(reduction='sum')(output, to_variable(label))
348 349 350 351 352 353 354 355 356
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
357
            device = hapi.set_device('cpu')
358 359 360
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

361
            net = MyModel(classifier_activation=None)
362
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
363
                                         parameter_list=net.parameters())
364

365 366
            inputs = [Input([None, dim], 'float32', 'x')]
            labels = [Input([None, 1], 'int64', 'label')]
367
            model = Model(net, inputs, labels)
368
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
369 370 371 372
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

373
    def test_test_batch(self):
374 375 376 377 378 379 380 381 382 383 384 385 386 387
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
            output = m(to_variable(data))
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
388
            device = hapi.set_device('cpu')
389 390
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
391
            net = MyModel()
392
            inputs = [Input([None, dim], 'float32', 'x')]
393 394
            model = Model(net, inputs)
            model.prepare()
395 396
            out, = model.test_batch([data])

397
            np.testing.assert_allclose(out, ref, rtol=1e-6)
398 399 400 401 402
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
403
            device = hapi.set_device('cpu')
404
            fluid.enable_dygraph(device) if dynamic else None
405
            net = MyModel(classifier_activation=None)
406 407
            inputs = [Input([None, 20], 'float32', 'x')]
            labels = [Input([None, 1], 'int64', 'label')]
408
            optim = fluid.optimizer.SGD(learning_rate=0.001,
409 410
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
411
            model.prepare(
412
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
413 414 415 416 417 418 419
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
420 421 422
        # dynamic saving
        device = hapi.set_device('cpu')
        fluid.enable_dygraph(device)
423
        model = Model(MyModel(classifier_activation=None))
424 425
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
426
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
427 428
        model.save(path + '/test')
        fluid.disable_dygraph()
429

430 431
        inputs = [Input([None, 20], 'float32', 'x')]
        labels = [Input([None, 1], 'int64', 'label')]
432
        model = Model(MyModel(classifier_activation=None), inputs, labels)
433 434
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
435
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
436 437 438 439 440 441
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

442
        net = MyModel(classifier_activation=None)
443 444
        inputs = [Input([None, 20], 'float32', 'x')]
        labels = [Input([None, 1], 'int64', 'label')]
445
        optim = fluid.optimizer.SGD(learning_rate=0.001,
446 447
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
448
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
449 450
        model.save(path + '/test')

451
        device = hapi.set_device('cpu')
452 453
        fluid.enable_dygraph(device)  #if dynamic else None

454
        net = MyModel(classifier_activation=None)
455 456
        inputs = [Input([None, 20], 'float32', 'x')]
        labels = [Input([None, 1], 'int64', 'label')]
457
        optim = fluid.optimizer.SGD(learning_rate=0.001,
458 459
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
460
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
461 462 463 464 465 466
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
467
            device = hapi.set_device('cpu')
468
            fluid.enable_dygraph(device) if dynamic else None
469
            net = MyModel()
470
            inputs = [Input([None, 20], 'float32', 'x')]
471 472
            model = Model(net, inputs)
            model.prepare()
473 474 475 476 477 478
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

    def test_export_deploy_model(self):
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
        for dynamic in [True, False]:
            fluid.enable_dygraph() if dynamic else None
            # paddle.disable_static() if dynamic else None
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
            net = LeNetDeclarative()
            inputs = [Input([None, 1, 28, 28], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
            ori_results = model.test_batch(tensor_img)
            model.save(save_dir, training=False)
            fluid.disable_dygraph() if dynamic else None
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
                    fluid.io.load_inference_model(
                        dirname=save_dir, executor=exe))
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-7)
                shutil.rmtree(save_dir)
511 512


513 514 515 516 517 518 519 520 521 522
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
        net = MyModel(classifier_activation=None)

        inputs = [Input([None, 10], 'float32')]
        labels = [Input([None, 1], 'int64', 'label')]
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)


523 524
if __name__ == '__main__':
    unittest.main()