nccl_op.cu 7.1 KB
Newer Older
D
Dong Zhihong 已提交
1 2 3 4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
Dong Zhihong 已提交
5 6
http://www.apache.org/licenseshashernless required by applicable law or agreed
to in writing, software
D
Dong Zhihong 已提交
7 8 9 10 11
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
Dong Zhihong 已提交
12 13
#include <functional>

D
Dong Zhihong 已提交
14
#include "paddle/framework/lod_tensor.h"
15 16
#include "paddle/framework/op_registry.h"
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
17 18 19 20

namespace paddle {
namespace operators {

21 22
using framework::Tensor;
using platform::Communicator;
D
Dong Zhihong 已提交
23
using framework::LoDTensor;
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

template <typename Type>
class NCCLTypeWrapper;

template <>
class NCCLTypeWrapper<float> {
 public:
  static const ncclDataType_t type = ncclFloat;
};

template <>
class NCCLTypeWrapper<double> {
 public:
  static const ncclDataType_t type = ncclDouble;
};

D
Dong Zhihong 已提交
40 41 42 43 44 45 46
template <typename T>
class NCCLAllReduceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

D
Dong Zhihong 已提交
47 48
    auto ins = ctx.MultiInput<LoDTensor>("X");
    auto outs = ctx.MultiOutput<LoDTensor>("Out");
D
Dong Zhihong 已提交
49

D
Dong Zhihong 已提交
50 51 52 53 54 55 56 57 58 59 60 61
    std::string reduction = ctx.Attr<std::string>("reduction");
    ncclRedOp_t reduction_op_ = ncclSum;

    if (reduction == "ncclMin") {
      reduction_op_ = ncclMin;
    } else if (reduction == "ncclMax") {
      reduction_op_ = ncclMax;
    } else if (reduction == "ncclSum") {
      reduction_op_ = ncclSum;
    } else if (reduction == "ncclProd") {
      reduction_op_ = ncclProd;
    } else {
D
dzhwinter 已提交
62
      PADDLE_THROW("Invalid reduction. default ncclSum.");
D
Dong Zhihong 已提交
63 64
    }

D
Dong Zhihong 已提交
65 66 67 68 69
    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
D
Dong Zhihong 已提交
70

D
Dong Zhihong 已提交
71
    // device id
D
Dong Zhihong 已提交
72 73
    int gpu_id = boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(gpu_id);
D
Dong Zhihong 已提交
74 75

    for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
76 77
      VLOG(1) << "gpu : "
              << " invoke allreduce. send " << ins[i]->numel() << " recv "
D
Dong Zhihong 已提交
78 79
              << outs[i]->numel();

D
Dong Zhihong 已提交
80
      PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
D
Dong Zhihong 已提交
81
          ins[i]->data<T>(), outs[i]->mutable_data<T>(ctx.GetPlace()),
D
Dong Zhihong 已提交
82
          outs[i]->numel(), NCCLTypeWrapper<T>::type, reduction_op_,
D
Dong Zhihong 已提交
83 84
          comm->comms_[idx], stream));
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
D
Dong Zhihong 已提交
85

D
Dong Zhihong 已提交
86 87
      VLOG(1) << "gpu : "
              << " finished allreduce. send " << ins[i]->numel() << " recv "
D
Dong Zhihong 已提交
88
              << outs[i]->numel();
D
Dong Zhihong 已提交
89 90 91 92
    }
  }
};

D
Dong Zhihong 已提交
93 94 95 96 97 98 99
template <typename T>
class NCCLReduceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

D
Dong Zhihong 已提交
100 101
    auto ins = ctx.MultiInput<LoDTensor>("X");  // x0, x1, x2
    auto outs = ctx.MultiOutput<LoDTensor>("Out");
D
Dong Zhihong 已提交
102

D
Dong Zhihong 已提交
103 104 105 106 107 108 109 110 111 112 113 114
    std::string reduction = ctx.Attr<std::string>("reduction");
    ncclRedOp_t reduction_op_ = ncclSum;

    if (reduction == "ncclMin") {
      reduction_op_ = ncclMin;
    } else if (reduction == "ncclMax") {
      reduction_op_ = ncclMax;
    } else if (reduction == "ncclSum") {
      reduction_op_ = ncclSum;
    } else if (reduction == "ncclProd") {
      reduction_op_ = ncclProd;
    } else {
D
dzhwinter 已提交
115
      PADDLE_THROW("Invalid reduction. default ncclSum.");
D
Dong Zhihong 已提交
116 117 118
    }

    int root = ctx.Attr<int>("root");
D
Dong Zhihong 已提交
119 120 121 122 123 124
    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
D
Dong Zhihong 已提交
125 126
    int gpu_id = boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(gpu_id);
D
Dong Zhihong 已提交
127

D
Dong Zhihong 已提交
128 129
    auto ins_names = ctx.Inputs("X");
    std::hash<std::string> hasher;
D
Dong Zhihong 已提交
130
    for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
131
      if (root == platform::kInvalidGPUId) {
D
Dong Zhihong 已提交
132 133
        root = hasher(ins_names[i]) % comm->comms_.size();
      }
D
Dong Zhihong 已提交
134
      T* recvbuffer = nullptr;
D
Dong Zhihong 已提交
135
      if (root == gpu_id) {
D
Dong Zhihong 已提交
136 137
        recvbuffer = outs[i]->mutable_data<T>(ctx.GetPlace());
      }
D
Dong Zhihong 已提交
138

D
Dong Zhihong 已提交
139 140
      VLOG(1) << "gpu : " << gpu_id << " invoke reduce. send "
              << ins[i]->numel() << " recv " << outs[i]->numel();
D
Dong Zhihong 已提交
141

D
Dong Zhihong 已提交
142 143
      PADDLE_ENFORCE(platform::dynload::ncclReduce(
          ins[i]->data<T>(), recvbuffer, ins[i]->numel(),
D
Dong Zhihong 已提交
144 145
          NCCLTypeWrapper<T>::type, reduction_op_, root, comm->comms_[idx],
          stream));
D
Dong Zhihong 已提交
146
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
D
Dong Zhihong 已提交
147

D
Dong Zhihong 已提交
148 149
      VLOG(1) << "gpu : " << gpu_id << " finished reduce. send "
              << ins[i]->numel() << " recv " << outs[i]->numel();
D
Dong Zhihong 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    }
  }
};

template <typename T>
class NCCLBcastKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

    int root = ctx.Attr<int>("root");

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
D
Dong Zhihong 已提交
169 170
    int gpu_id = boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(gpu_id);
D
Dong Zhihong 已提交
171

D
Dong Zhihong 已提交
172
    if (idx == root) {
D
Dong Zhihong 已提交
173
      auto ins = ctx.MultiInput<LoDTensor>("X");
D
Dong Zhihong 已提交
174
      for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
175 176
        VLOG(1) << "gpu : " << gpu_id << " invoke Bcast. send "
                << ins[i]->numel();
D
Dong Zhihong 已提交
177

D
Dong Zhihong 已提交
178
        VLOG(1) << " before ncclBcast";
D
Dong Zhihong 已提交
179 180 181
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            (void*)ins[i]->data<T>(), ins[i]->numel(), NCCLTypeWrapper<T>::type,
            root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
182
        VLOG(1) << " after ncclBcast";
D
Dong Zhihong 已提交
183
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
D
Dong Zhihong 已提交
184

D
Dong Zhihong 已提交
185
        VLOG(1) << "gpu : " << gpu_id << " finished Bcast.";
D
Dong Zhihong 已提交
186 187
      }
    } else {
D
Dong Zhihong 已提交
188
      auto outs = ctx.MultiOutput<LoDTensor>("Out");
D
Dong Zhihong 已提交
189
      for (size_t i = 0; i < outs.size(); ++i) {
D
Dong Zhihong 已提交
190 191
        VLOG(1) << "gpu : " << gpu_id << " invoke Bcast. recv buffer "
                << framework::product(outs[i]->dims());
D
Dong Zhihong 已提交
192

D
Dong Zhihong 已提交
193 194 195
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            outs[i]->mutable_data<T>(ctx.GetPlace()), outs[i]->numel(),
            NCCLTypeWrapper<T>::type, root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
196
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
D
Dong Zhihong 已提交
197

D
Dong Zhihong 已提交
198 199
        VLOG(1) << "gpu : " << gpu_id << " finished Bcast. recv "
                << outs[i]->numel();
D
Dong Zhihong 已提交
200 201 202 203 204
      }
    }
  }
};

D
Dong Zhihong 已提交
205 206 207 208 209
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel<float>);
D
Dong Zhihong 已提交
210
REGISTER_OP_GPU_KERNEL(ncclBcast, ops::NCCLBcastKernel<float>);
D
Dong Zhihong 已提交
211
REGISTER_OP_GPU_KERNEL(ncclReduce, ops::NCCLReduceKernel<float>);