Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
38d3adfe
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
38d3adfe
编写于
10月 25, 2017
作者:
D
Dong Zhihong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"add multioperator testcase"
上级
94992a99
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
180 addition
and
121 deletion
+180
-121
paddle/operators/nccl_op.cc
paddle/operators/nccl_op.cc
+25
-46
paddle/operators/nccl_op.cu
paddle/operators/nccl_op.cu
+8
-5
paddle/operators/nccl_op_test.cu
paddle/operators/nccl_op_test.cu
+147
-70
未找到文件。
paddle/operators/nccl_op.cc
浏览文件 @
38d3adfe
...
...
@@ -100,8 +100,8 @@ class NCCLReduceOp : public framework::OperatorWithKernel {
}
};
// Bcast
Send
Op
class
NCCLBcast
Send
Op
:
public
framework
::
OperatorWithKernel
{
// BcastOp
class
NCCLBcastOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -111,20 +111,12 @@ class NCCLBcastSendOp : public framework::OperatorWithKernel {
" Input(X) of Bcast op input should not be NULL"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Communicator"
),
" Input(Communicator) of Bcast op input should not be NULL"
);
}
};
// BcastRecvOp
class
NCCLBcastRecvOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Communicator"
),
" Input(Communicator) of Bcast op input should not be NULL"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
" Output(Out) of Bcast op output should not be NULL"
);
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
ctx
->
SetOutputsDim
(
"Out"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
@@ -146,52 +138,41 @@ class NCCLAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
}
};
// BcastSend should be in the root
// BcastSendOp
class
NCCLBcastSendOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
// ReduceOp
class
NCCLReduceOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
NCCL
BcastSend
OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
NCCL
Reduce
OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of
BcastSend
op"
);
AddInput
(
"X"
,
"The input of
Reduce
op"
);
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddAttr
<
int
>
(
"root"
,
"root gpu of Bcast"
);
AddOutput
(
"Out"
,
"The output of Reduce op"
);
AddAttr
<
int
>
(
"root"
,
"root gpu of the parameter. if not set(-1). hashed by name."
)
.
SetDefault
(
-
1
);
AddComment
(
R"DOC(
Bcast the tensors.
)DOC"
);
Reduce the tensors)DOC"
);
}
};
// BcastOp
class
NCCLBcast
Recv
OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
NCCLBcastOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
NCCLBcast
Recv
OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
NCCLBcastOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of BcastSend op"
);
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddAttr
<
int
>
(
"root"
,
"root gpu of BcastRecv"
);
AddOutput
(
"Out"
,
"The output of Bcast"
);
AddAttr
<
int
>
(
"root"
,
"root gpu of the parameter. if not set(-1). hashed by name."
)
.
SetDefault
(
-
1
);
AddComment
(
R"DOC(
Bcast the tensors.
)DOC"
);
}
};
// BcastRecvOp
class
NCCLReduceOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
NCCLReduceOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of Reduce op"
);
AddInput
(
"Communicator"
,
"Communicator for communicating between gpus"
);
AddOutput
(
"Out"
,
"The output of Reduce op"
);
AddComment
(
R"DOC(
Reduce the tensors.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -201,9 +182,7 @@ REGISTER_OPERATOR(ncclInit, ops::NCCLInitOp,
REGISTER_OP_WITHOUT_GRADIENT
(
ncclAllReduce
,
ops
::
NCCLAllReduceOp
,
ops
::
NCCLAllReduceOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
ncclBcastSend
,
ops
::
NCCLBcastSendOp
,
ops
::
NCCLBcastSendOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
ncclBcastRecv
,
ops
::
NCCLBcastRecvOp
,
ops
::
NCCLBcastRecvOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
ncclBcast
,
ops
::
NCCLBcastOp
,
ops
::
NCCLBcastOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
ncclReduce
,
ops
::
NCCLReduceOp
,
ops
::
NCCLReduceOpMaker
);
paddle/operators/nccl_op.cu
浏览文件 @
38d3adfe
...
...
@@ -83,6 +83,7 @@ class NCCLReduceKernel : public framework::OpKernel<T> {
auto
ins
=
ctx
.
MultiInput
<
LoDTensor
>
(
"X"
);
// x0, x1, x2
auto
outs
=
ctx
.
MultiOutput
<
LoDTensor
>
(
"Out"
);
int
root
=
ctx
.
Attr
<
int
>
(
"root"
);
auto
*
comm
=
ctx
.
Input
<
Communicator
>
(
"Communicator"
);
...
...
@@ -97,7 +98,9 @@ class NCCLReduceKernel : public framework::OpKernel<T> {
auto
ins_names
=
ctx
.
Inputs
(
"X"
);
std
::
hash
<
std
::
string
>
hasher
;
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
int
root
=
hasher
(
ins_names
[
i
])
%
comm
->
comms_
.
size
();
if
(
root
==
-
1
)
{
root
=
hasher
(
ins_names
[
i
])
%
comm
->
comms_
.
size
();
}
T
*
recvbuffer
=
nullptr
;
if
(
root
==
device_id
)
{
recvbuffer
=
outs
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -135,8 +138,9 @@ class NCCLBcastKernel : public framework::OpKernel<T> {
int
device_id
=
boost
::
get
<
platform
::
GPUPlace
>
(
ctx
.
GetPlace
()).
GetDeviceId
();
int
idx
=
comm
->
GetCommId
(
device_id
);
if
(
idx
==
root
)
{
auto
ins
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
ins
=
ctx
.
MultiInput
<
LoD
Tensor
>
(
"X"
);
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclBcast
(
(
void
*
)
ins
[
i
]
->
data
<
T
>
(),
ins
[
i
]
->
numel
(),
NCCLTypeWrapper
<
T
>::
type
,
...
...
@@ -144,7 +148,7 @@ class NCCLBcastKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream
));
}
}
else
{
auto
outs
=
ctx
.
MultiOutput
<
Tensor
>
(
"Out"
);
auto
outs
=
ctx
.
MultiOutput
<
LoD
Tensor
>
(
"Out"
);
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclBcast
(
outs
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
outs
[
i
]
->
numel
(),
...
...
@@ -160,6 +164,5 @@ class NCCLBcastKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
ncclAllReduce
,
ops
::
NCCLAllReduceKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
ncclBcast
Send
,
ops
::
NCCLBcastKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
ncclBcast
,
ops
::
NCCLBcastKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
ncclReduce
,
ops
::
NCCLReduceKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
ncclBcastRecv
,
ops
::
NCCLBcastKernel
<
float
>
);
paddle/operators/nccl_op_test.cu
浏览文件 @
38d3adfe
...
...
@@ -28,6 +28,7 @@
#include "paddle/framework/op_registry.h"
#include "paddle/framework/program_desc.h"
#include "paddle/framework/var_desc.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/nccl/nccl_gpu_common.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/enforce.h"
...
...
@@ -37,8 +38,7 @@
USE_NO_KERNEL_OP
(
ncclInit
);
USE_GPU_ONLY_OP
(
ncclAllReduce
);
USE_GPU_ONLY_OP
(
ncclReduce
);
USE_GPU_ONLY_OP
(
ncclBcastSend
);
USE_GPU_ONLY_OP
(
ncclBcastRecv
);
USE_GPU_ONLY_OP
(
ncclBcast
);
namespace
f
=
paddle
::
framework
;
namespace
p
=
paddle
::
platform
;
...
...
@@ -144,12 +144,62 @@ class NCCLTester : public ::testing::Test {
// }
// ncclAllReduceOp with desc
TEST_F
(
NCCLTester
,
ncclAllReduceOp
)
{
// TEST_F(NCCLTester, ncclAllReduceOp) {
// std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
// op2->SetType("ncclAllReduce");
// op2->SetInput("X", {"st"});
// op2->SetInput("Communicator", {"comm"});
// op2->SetOutput("Out", {"rt"});
// std::vector<f::Scope *> dev_scopes;
// std::vector<std::thread> ths;
// for (size_t i = 0; i < gpu_list.size(); ++i) {
// dev_scopes.emplace_back(&g_scope.NewScope());
// std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
// *op2.get(), dev_scopes[i]);
// ths.emplace_back(std::move(th));
// }
// for (size_t i = 0; i < gpu_list.size(); ++i) {
// ths[i].join();
// }
// // check results
// float result = std::accumulate(gpu_list.begin(), gpu_list.end(), 0);
// for (size_t i = 0; i < dev_scopes.size(); ++i) {
// p::CPUPlace cpu_place;
// p::GPUPlace gpu_place(gpu_list[i]);
// auto &recv_tensor = dev_scopes[i]->FindVar("rt")->Get<f::LoDTensor>();
// auto *rt = recv_tensor.data<float>();
// auto *result_tensor =
// dev_scopes[i]->Var("ct")->GetMutable<f::LoDTensor>();
// result_tensor->Resize(kDims);
// auto *ct = result_tensor->mutable_data<float>(cpu_place);
// paddle::memory::Copy(
// cpu_place, ct, p::GPUPlace(gpu_list[i]), rt,
// recv_tensor.numel() * sizeof(float),
// static_cast<p::CUDADeviceContext *>(dev_ctxs[i])->stream());
// for (size_t j = 0; j < f::product(kDims); ++j) {
// ASSERT_NEAR(ct[j], result, 1e-5);
// }
// }
// }
// ncclAReduceOp with desc
TEST_F
(
NCCLTester
,
ncclReduceOp
)
{
std
::
unique_ptr
<
f
::
OpDescBind
>
op2
(
new
f
::
OpDescBind
);
op2
->
SetType
(
"ncclAllReduce"
);
const
int
kRoot
=
0
;
op2
->
SetType
(
"ncclReduce"
);
op2
->
SetInput
(
"X"
,
{
"st"
});
op2
->
SetInput
(
"Communicator"
,
{
"comm"
});
op2
->
SetOutput
(
"Out"
,
{
"rt"
});
op2
->
SetAttr
(
"root"
,
{
kRoot
});
std
::
vector
<
f
::
Scope
*>
dev_scopes
;
...
...
@@ -166,39 +216,43 @@ TEST_F(NCCLTester, ncclAllReduceOp) {
ths
[
i
].
join
();
}
// check results
float
result
=
0
;
std
::
accumulate
(
gpu_list
.
begin
(),
gpu_list
.
end
(),
result
);
for
(
size_t
i
=
0
;
i
<
dev_scopes
.
size
();
++
i
)
{
auto
&
recv_tensor
=
dev_scopes
[
i
]
->
FindVar
(
"rt"
)
->
Get
<
f
::
LoDTensor
>
();
auto
*
rt
=
recv_tensor
.
data
<
float
>
();
// check results on
float
result
=
std
::
accumulate
(
gpu_list
.
begin
(),
gpu_list
.
end
(),
0
);
p
::
CPUPlace
cpu_place
;
auto
*
result_tensor
=
dev_scopes
[
i
]
->
Var
(
"ct"
)
->
GetMutable
<
f
::
LoDTensor
>
();
result_tensor
->
Resize
(
kDims
);
auto
*
ct
=
result_tensor
->
mutable_data
<
float
>
(
cpu_place
);
p
::
CPUPlace
cpu_place
;
p
::
GPUPlace
gpu_place
(
gpu_list
[
kRoot
]);
paddle
::
memory
::
Copy
(
cpu_place
,
ct
,
p
::
GPUPlace
(
gpu_list
[
i
]),
rt
,
recv_tensor
.
numel
()
*
sizeof
(
float
),
static_cast
<
p
::
CUDADeviceContext
*>
(
dev_ctxs
[
i
])
->
stream
());
for
(
size_t
j
=
0
;
j
<
f
::
product
(
kDims
);
++
j
)
{
ASSERT_NEAR
(
ct
[
j
],
result
,
1e-5
);
}
auto
&
recv_tensor
=
dev_scopes
[
kRoot
]
->
FindVar
(
"rt"
)
->
Get
<
f
::
LoDTensor
>
();
auto
*
rt
=
recv_tensor
.
data
<
float
>
();
auto
*
result_tensor
=
dev_scopes
[
kRoot
]
->
Var
(
"ct"
)
->
GetMutable
<
f
::
LoDTensor
>
();
result_tensor
->
Resize
(
kDims
);
auto
*
ct
=
result_tensor
->
mutable_data
<
float
>
(
cpu_place
);
paddle
::
memory
::
Copy
(
cpu_place
,
ct
,
p
::
GPUPlace
(
gpu_list
[
kRoot
]),
rt
,
recv_tensor
.
numel
()
*
sizeof
(
float
),
static_cast
<
p
::
CUDADeviceContext
*>
(
dev_ctxs
[
kRoot
])
->
stream
());
for
(
int
j
=
0
;
j
<
f
::
product
(
kDims
);
++
j
)
{
ASSERT_NEAR
(
ct
[
j
],
result
,
1e-5
);
}
}
//
ncclReduce
Op with desc
TEST
(
NCCL
,
ncclReduce
Op
)
{
//
// ncclBcast
Op with desc
TEST
_F
(
NCCLTester
,
ncclBcast
Op
)
{
std
::
unique_ptr
<
f
::
OpDescBind
>
op2
(
new
f
::
OpDescBind
);
op2
->
SetType
(
"ncclReduce"
);
const
int
kRoot
=
0
;
op2
->
SetType
(
"ncclBcast"
);
op2
->
SetInput
(
"X"
,
{
"st"
});
op2
->
SetInput
(
"Communicator"
,
{
"comm"
});
op2
->
SetOutput
(
"Out"
,
{
"rt"
});
op2
->
SetAttr
(
"root"
,
{
kRoot
});
std
::
vector
<
f
::
Scope
*>
dev_scopes
;
std
::
vector
<
std
::
thread
>
ths
;
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
dev_scopes
.
emplace_back
(
&
g_scope
.
NewScope
());
std
::
thread
th
(
&
NCCLTester
::
PerThreadProgram
<
float
>
,
this
,
gpu_list
[
i
],
...
...
@@ -210,76 +264,99 @@ TEST(NCCL, ncclReduceOp) {
ths
[
i
].
join
();
}
// check results
float
result
=
0
;
std
::
accumulate
(
gpu_list
.
begin
(),
gpu_list
.
end
(),
result
);
for
(
size_t
i
=
0
;
i
<
dev_scopes
.
size
();
++
i
)
{
auto
&
recv_tensor
=
dev_scopes
[
i
]
->
FindVar
(
"rt"
)
->
Get
<
f
::
LoDTensor
>
();
auto
*
rt
=
recv_tensor
.
data
<
float
>
();
const
int
idx
=
1
;
// check results on
float
result
=
std
::
accumulate
(
gpu_list
.
begin
(),
gpu_list
.
end
(),
0
);
p
::
CPUPlace
cpu_place
;
auto
*
result_tensor
=
dev_scopes
[
i
]
->
Var
(
"ct"
)
->
GetMutable
<
f
::
LoDTensor
>
();
result_tensor
->
Resize
(
kDims
);
auto
*
ct
=
result_tensor
->
mutable_data
<
float
>
(
cpu_place
);
p
::
CPUPlace
cpu_place
;
p
::
GPUPlace
gpu_place
(
gpu_list
[
idx
]);
paddle
::
memory
::
Copy
(
cpu_place
,
ct
,
p
::
GPUPlace
(
gpu_list
[
i
]),
rt
,
recv_tensor
.
numel
()
*
sizeof
(
float
),
static_cast
<
p
::
CUDADeviceContext
*>
(
dev_ctxs
[
i
])
->
stream
());
for
(
size_t
j
=
0
;
j
<
f
::
product
(
kDims
);
++
j
)
{
ASSERT_NEAR
(
ct
[
j
],
result
,
1e-5
);
}
auto
&
recv_tensor
=
dev_scopes
[
idx
]
->
FindVar
(
"rt"
)
->
Get
<
f
::
LoDTensor
>
();
auto
*
rt
=
recv_tensor
.
data
<
float
>
();
auto
*
result_tensor
=
dev_scopes
[
idx
]
->
Var
(
"ct"
)
->
GetMutable
<
f
::
LoDTensor
>
();
result_tensor
->
Resize
(
kDims
);
auto
*
ct
=
result_tensor
->
mutable_data
<
float
>
(
cpu_place
);
paddle
::
memory
::
Copy
(
cpu_place
,
ct
,
p
::
GPUPlace
(
gpu_list
[
idx
]),
rt
,
recv_tensor
.
numel
()
*
sizeof
(
float
),
static_cast
<
p
::
CUDADeviceContext
*>
(
dev_ctxs
[
idx
])
->
stream
());
for
(
size_t
j
=
0
;
j
<
f
::
product
(
kDims
);
++
j
)
{
ASSERT_NEAR
(
ct
[
j
],
result
,
1e-5
);
}
}
// ncclBcastOp with desc
TEST
(
NCCL
,
ncclBcastOp
)
{
// joint ncclBcastOp and ncclReduceOp
TEST_F
(
NCCLTester
,
MultipleOp
)
{
const
int
kRoot
=
0
;
std
::
unique_ptr
<
f
::
OpDescBind
>
op1
(
new
f
::
OpDescBind
);
op1
->
SetType
(
"nccl
BcastSend
"
);
op1
->
SetInput
(
"X"
,
{
"
s
t"
});
op1
->
SetType
(
"nccl
Reduce
"
);
op1
->
SetInput
(
"X"
,
{
"
r
t"
});
op1
->
SetInput
(
"Communicator"
,
{
"comm"
});
op1
->
SetOutput
(
"Out"
,
{
"rt"
});
op2
->
SetAttr
(
"root"
,
{
kRoot
});
std
::
unique_ptr
<
f
::
OpDescBind
>
op2
(
new
f
::
OpDescBind
);
op2
->
SetType
(
"ncclBcastRecv"
);
op2
->
SetType
(
"ncclBcast"
);
op2
->
SetInput
(
"X"
,
{
"st"
});
op2
->
SetInput
(
"Communicator"
,
{
"comm"
});
op2
->
SetOutput
(
"Out"
,
{
"rt"
});
op2
->
SetAttr
(
"root"
,
{
kRoot
});
std
::
vector
<
f
::
Scope
*>
dev_scopes
;
std
::
vector
<
std
::
thread
>
ths
;
for
(
size_t
i
=
1
;
i
<
gpu_list
.
size
();
++
i
)
{
// run Bcast
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
dev_scopes
.
emplace_back
(
&
g_scope
.
NewScope
());
std
::
thread
th
(
&
NCCLTester
::
PerThreadProgram
<
float
>
,
this
,
gpu_list
[
i
],
*
op
2
.
get
(),
&
g_scope
.
NewScope
()
);
*
op
1
.
get
(),
dev_scopes
[
i
]
);
ths
.
emplace_back
(
std
::
move
(
th
));
}
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
ths
[
i
].
join
();
}
}
// joint ncclBcastOp and ncclReduceOp
// TEST(NCCL, MultipleOp) {
// std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
// op2->SetType("ncclBcastSend");
// op2->SetInput("X", {"st"});
// op2->SetInput("Communicator", {"comm"});
ths
.
clear
();
// std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
// op2->SetType("ncclBcastRecv");
// op2->SetInput("Communicator", {"comm"});
// op2->SetOutput("Out", {"rt"});
// run Reduce
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
dev_scopes
.
emplace_back
(
&
g_scope
.
NewScope
());
std
::
thread
th
(
&
NCCLTester
::
PerThreadProgram
<
float
>
,
this
,
gpu_list
[
i
],
*
op2
.
get
(),
dev_scopes
[
i
]);
ths
.
emplace_back
(
std
::
move
(
th
));
}
// std::vector<std::thread> ths;
// for (size_t i = 0; i < gpu_list.size(); ++i) {
// std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
// *op2.get(),
// &g_scope.NewScope());
// ths.emplace_back(std::move(th));
// }
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
ths
[
i
].
join
();
}
// for (size_t i = 0; i < gpu_list.size(); ++i) {
// ths[i].join();
// }
// }
// check results
float
result
=
std
::
accumulate
(
gpu_list
.
begin
(),
gpu_list
.
end
(),
0
);
for
(
size_t
i
=
0
;
i
<
dev_scopes
.
size
();
++
i
)
{
p
::
CPUPlace
cpu_place
;
p
::
GPUPlace
gpu_place
(
gpu_list
[
i
]);
auto
&
recv_tensor
=
dev_scopes
[
i
]
->
FindVar
(
"rt"
)
->
Get
<
f
::
LoDTensor
>
();
auto
*
rt
=
recv_tensor
.
data
<
float
>
();
auto
*
result_tensor
=
dev_scopes
[
i
]
->
Var
(
"ct"
)
->
GetMutable
<
f
::
LoDTensor
>
();
result_tensor
->
Resize
(
kDims
);
auto
*
ct
=
result_tensor
->
mutable_data
<
float
>
(
cpu_place
);
paddle
::
memory
::
Copy
(
cpu_place
,
ct
,
p
::
GPUPlace
(
gpu_list
[
i
]),
rt
,
recv_tensor
.
numel
()
*
sizeof
(
float
),
static_cast
<
p
::
CUDADeviceContext
*>
(
dev_ctxs
[
i
])
->
stream
());
for
(
int
j
=
0
;
j
<
f
::
product
(
kDims
);
++
j
)
{
ASSERT_NEAR
(
ct
[
j
],
result
,
1e-5
);
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
const
int
dev_count
=
p
::
GetCUDADeviceCount
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录