precision_recall_op.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/metrics/precision_recall_op.h"
Y
yangyaming 已提交
16

Y
yangyaming 已提交
17 18 19 20 21 22 23 24
namespace paddle {
namespace operators {

class PrecisionRecallOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
Y
yangyaming 已提交
25 26 27 28
    PADDLE_ENFORCE(ctx->HasInput("MaxProbs"),
                   "Input(MaxProbs) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Indices"),
                   "Input(Indices) should not be null.");
Y
yangyaming 已提交
29 30 31 32 33 34 35 36 37
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchMetrics"),
                   "Output(BatchMetrics) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("AccumMetrics"),
                   "Output(AccumMetrics) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("AccumStatesInfo"),
                   "Output(AccumStatesInfo) should not be null.");

Y
yangyaming 已提交
38 39 40
    int64_t cls_num =
        static_cast<int64_t>(ctx->Attrs().Get<int>("class_number"));
    auto max_probs_dims = ctx->GetInputDim("MaxProbs");
Y
yangyaming 已提交
41 42
    auto labels_dims = ctx->GetInputDim("Labels");

P
phlrain 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(max_probs_dims[1], 1,
                        "Each instance contains one max probability, so the "
                        "shape of Input(MaxProbs) should be [batch_size, 1].");
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Indices"), max_probs_dims,
          "The shape of Input(Indices) should bes same with max_probs_dims");
      PADDLE_ENFORCE_EQ(
          max_probs_dims[0], labels_dims[0],
          "The 1st dimension of Input(MaxProbs) and "
          "Input(Labels) both are batch_size and the shape should "
          "be the same.");
      PADDLE_ENFORCE_EQ(labels_dims[1], 1,
                        "The 2nd dimension of Input(Labels) contains instance "
                        "label and the shape should be equal to 1.");
    }
Y
yangyaming 已提交
59 60
    if (ctx->HasInput("Weights")) {
      auto weights_dims = ctx->GetInputDim("Weights");
P
phlrain 已提交
61 62 63 64 65 66 67

      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_EQ(weights_dims,
                          framework::make_ddim({max_probs_dims[0], 1}),
                          "The shape of Input(Weights) should be "
                          "[batch_size, 1].");
      }
Y
yangyaming 已提交
68 69 70
    }
    if (ctx->HasInput("StatesInfo")) {
      auto states_dims = ctx->GetInputDim("StatesInfo");
P
phlrain 已提交
71 72 73 74 75 76

      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_EQ(states_dims, framework::make_ddim({cls_num, 4}),
                          "The shape of Input(StatesInfo) should be "
                          "[class_number, 4].");
      }
Y
yangyaming 已提交
77 78 79 80 81 82 83 84 85 86 87 88
    }

    // Layouts of BatchMetrics and AccumMetrics both are:
    // [
    //  macro average precision, macro average recall, macro average F1 score,
    //  micro average precision, micro average recall, micro average F1 score
    // ]
    ctx->SetOutputDim("BatchMetrics", {6});
    ctx->SetOutputDim("AccumMetrics", {6});
    // Shape of AccumStatesInfo is [class_number, 4]
    // The layout of each row is:
    // [ TP, FP, TN, FN ]
Y
yangyaming 已提交
89
    ctx->SetOutputDim("AccumStatesInfo", {cls_num, 4});
Y
yangyaming 已提交
90
  }
Y
yangyaming 已提交
91 92

 protected:
93
  framework::OpKernelType GetExpectedKernelType(
Y
yangyaming 已提交
94
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
95 96
    return framework::OpKernelType(ctx.Input<Tensor>("MaxProbs")->type(),
                                   ctx.device_context());
Y
yangyaming 已提交
97
  }
Y
yangyaming 已提交
98 99 100 101
};

class PrecisionRecallOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
102
  void Make() override {
Y
yangyaming 已提交
103
    AddInput("MaxProbs",
K
kexinzhao 已提交
104
             "(Tensor, default Tensor<float>) A 2-D tensor with shape N x 1, "
Y
yangyaming 已提交
105 106 107 108
             "where N is the batch size. Each row contains the max probability "
             "of an instance which computed by the previous top_k (k=1) "
             "operator.");
    AddInput("Indices",
K
kexinzhao 已提交
109
             "(Tensor, default Tensor<int>) A 2-D tensor with shape N x 1, "
Y
yangyaming 已提交
110 111
             "where N is the batch size. Each row contains the corresponding "
             "index which computed by the previous top_k (k=1) operator.");
Y
yangyaming 已提交
112
    AddInput("Labels",
K
kexinzhao 已提交
113
             "(Tensor, default Tensor<int>) A 2-D tensor with shape N x 1, "
Y
yangyaming 已提交
114 115 116
             "where N is the batch size. Each element is a label and the "
             "value should be in [0, class_number - 1].");
    AddInput("Weights",
K
kexinzhao 已提交
117
             "(Tensor, default Tensor<float>) A 2-D tensor with shape N x 1, "
Y
yangyaming 已提交
118 119 120 121
             "where N is the batch size. This input is optional. If provided, "
             "weight of instance would be considered when computing metrics.")
        .AsDispensable();
    AddInput("StatesInfo",
K
kexinzhao 已提交
122
             "(Tensor, default Tensor<int>) A 2-D tensor with shape D x 4, "
Y
yangyaming 已提交
123 124
             "where D is the number of classes. This input is optional. If "
             "provided, current state will be accumulated to this state and "
K
kexinzhao 已提交
125
             "the accumulation state will be the output state.")
Y
yangyaming 已提交
126
        .AsDispensable();
Y
yangyaming 已提交
127
    AddOutput("BatchMetrics",
K
kexinzhao 已提交
128 129
              "(Tensor, default Tensor<float>) A 1-D tensor with shape {6}. "
              "This output tensor contains metrics for current batch data. "
Y
yangyaming 已提交
130 131
              "The layout is [macro average precision, macro average recall, "
              "macro f1 score, micro average precision, micro average recall, "
K
kexinzhao 已提交
132
              "micro f1 score].");
Y
yangyaming 已提交
133
    AddOutput("AccumMetrics",
K
kexinzhao 已提交
134 135
              "(Tensor, default Tensor<float>) A 1-D tensor with shape {6}. "
              "This output tensor contains metrics for accumulated data. "
Y
yangyaming 已提交
136 137
              "The layout is [macro average precision, macro average recall, "
              "macro f1 score, micro average precision, micro average recall, "
K
kexinzhao 已提交
138
              "micro f1 score].");
Y
yangyaming 已提交
139
    AddOutput("AccumStatesInfo",
K
kexinzhao 已提交
140
              "(Tensor, default Tensor<float>) A 2-D tensor with shape D x 4, "
Y
yangyaming 已提交
141 142 143 144
              "where D is equal to class number. This output tensor contains "
              "accumulated state variables used to compute metrics. The layout "
              "for each class is [true positives, false positives, "
              "true negatives, false negatives].");
K
kexinzhao 已提交
145
    AddAttr<int>("class_number", "(int) Number of classes to be evaluated.");
Y
yangyaming 已提交
146
    AddComment(R"DOC(
K
kexinzhao 已提交
147 148 149
Precision Recall Operator.

When given Input(Indices) and Input(Labels), this operator can be used
Y
yangyaming 已提交
150
to compute various metrics including:
K
kexinzhao 已提交
151 152 153 154 155 156
1. macro average precision
2. macro average recall
3. macro f1 score
4. micro average precision
5. micro average recall
6. micro f1 score
Y
yangyaming 已提交
157

158
To compute the above metrics, we need to do statistics for true positives,
K
kexinzhao 已提交
159
false positives and false negatives. Here the count of true negatives is not
160
necessary, but counting it may provide potential usage and the cost is
K
kexinzhao 已提交
161
trivial, so the operator also provides the count of true negatives.
Y
yangyaming 已提交
162

Y
yangyaming 已提交
163
We define state as a 2-D tensor with shape [class_number, 4]. Each row of a
Y
yangyaming 已提交
164 165
state contains statistic variables for corresponding class. Layout of each row
is: TP(true positives), FP(false positives), TN(true negatives),
K
kexinzhao 已提交
166 167
FN(false negatives). If Input(Weights) is provided, TP, FP, TN, FN will be
calculated by given weight instead of the instance count.
Y
yangyaming 已提交
168 169

This operator also supports metrics computing for cross-batch situation. To
K
kexinzhao 已提交
170 171
achieve this, Input(StatesInfo) should be provided. State of current batch
data will be accumulated to Input(StatesInfo) and Output(AccumStatesInfo)
Y
yangyaming 已提交
172 173
is the accumulation state.

K
kexinzhao 已提交
174 175
Output(BatchMetrics) is metrics of current batch data while
Output(AccumStatesInfo) is metrics of accumulation data.
Y
yangyaming 已提交
176

Y
yangyaming 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(precision_recall, ops::PrecisionRecallOp,
                             ops::PrecisionRecallOpMaker);
REGISTER_OP_CPU_KERNEL(
    precision_recall,
    ops::PrecisionRecallKernel<paddle::platform::CPUPlace, float>,
Y
yangyaming 已提交
190
    ops::PrecisionRecallKernel<paddle::platform::CPUPlace, double>);