test_bmn.py 30.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16 17
import os
import tempfile
18
import unittest
19 20 21 22

import numpy as np
from predictor_utils import PredictorTools

L
Leo Chen 已提交
23
import paddle
24
from paddle import fluid
25 26
from paddle.fluid import ParamAttr
from paddle.fluid.dygraph import to_variable
R
Ryan 已提交
27
from paddle.jit import to_static
28
from paddle.jit.translated_layer import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
29

M
MRXLT 已提交
30
SEED = 2000
31 32 33 34 35 36 37 38 39
DATATYPE = 'float32'

# Note: Set True to eliminate randomness.
#     1. For one operation, cuDNN has several algorithms,
#        some algorithm results are non-deterministic, like convolution algorithms.
if fluid.is_compiled_with_cuda():
    fluid.set_flags({'FLAGS_cudnn_deterministic': True})


40 41 42 43
def get_interp1d_mask(
    tscale, dscale, prop_boundary_ratio, num_sample, num_sample_perbin
):
    """generate sample mask for each point in Boundary-Matching Map"""
44 45 46 47 48 49 50 51 52 53
    mask_mat = []
    for start_index in range(tscale):
        mask_mat_vector = []
        for duration_index in range(dscale):
            if start_index + duration_index < tscale:
                p_xmin = start_index
                p_xmax = start_index + duration_index
                center_len = float(p_xmax - p_xmin) + 1
                sample_xmin = p_xmin - center_len * prop_boundary_ratio
                sample_xmax = p_xmax + center_len * prop_boundary_ratio
54 55 56 57 58 59 60
                p_mask = _get_interp1d_bin_mask(
                    sample_xmin,
                    sample_xmax,
                    tscale,
                    num_sample,
                    num_sample_perbin,
                )
61 62 63 64 65 66 67 68 69 70 71 72
            else:
                p_mask = np.zeros([tscale, num_sample])
            mask_mat_vector.append(p_mask)
        mask_mat_vector = np.stack(mask_mat_vector, axis=2)
        mask_mat.append(mask_mat_vector)
    mask_mat = np.stack(mask_mat, axis=3)
    mask_mat = mask_mat.astype(np.float32)

    sample_mask = np.reshape(mask_mat, [tscale, -1])
    return sample_mask


73 74 75 76
def _get_interp1d_bin_mask(
    seg_xmin, seg_xmax, tscale, num_sample, num_sample_perbin
):
    """generate sample mask for a boundary-matching pair"""
77 78 79 80 81 82 83 84
    plen = float(seg_xmax - seg_xmin)
    plen_sample = plen / (num_sample * num_sample_perbin - 1.0)
    total_samples = [
        seg_xmin + plen_sample * ii
        for ii in range(num_sample * num_sample_perbin)
    ]
    p_mask = []
    for idx in range(num_sample):
85 86 87
        bin_samples = total_samples[
            idx * num_sample_perbin : (idx + 1) * num_sample_perbin
        ]
88 89 90 91 92 93 94 95 96 97 98 99 100 101
        bin_vector = np.zeros([tscale])
        for sample in bin_samples:
            sample_upper = math.ceil(sample)
            sample_decimal, sample_down = math.modf(sample)
            if int(sample_down) <= (tscale - 1) and int(sample_down) >= 0:
                bin_vector[int(sample_down)] += 1 - sample_decimal
            if int(sample_upper) <= (tscale - 1) and int(sample_upper) >= 0:
                bin_vector[int(sample_upper)] += sample_decimal
        bin_vector = 1.0 / num_sample_perbin * bin_vector
        p_mask.append(bin_vector)
    p_mask = np.stack(p_mask, axis=1)
    return p_mask


102
class Conv1D(paddle.nn.Layer):
103 104 105 106 107 108 109 110 111 112
    def __init__(
        self,
        prefix,
        num_channels=256,
        num_filters=256,
        size_k=3,
        padding=1,
        groups=1,
        act="relu",
    ):
113
        super().__init__()
114
        fan_in = num_channels * size_k * 1
115 116 117
        k = 1.0 / math.sqrt(fan_in)
        param_attr = ParamAttr(
            name=prefix + "_w",
118
            initializer=paddle.nn.initializer.Uniform(low=-k, high=k),
119 120 121
        )
        bias_attr = ParamAttr(
            name=prefix + "_b",
122
            initializer=paddle.nn.initializer.Uniform(low=-k, high=k),
123 124
        )

125 126 127 128
        self._conv2d = paddle.nn.Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=(1, size_k),
129 130 131
            stride=1,
            padding=(0, padding),
            groups=groups,
132
            weight_attr=param_attr,
133 134
            bias_attr=bias_attr,
        )
135 136

    def forward(self, x):
137
        x = paddle.unsqueeze(x, axis=[2])
138
        x = self._conv2d(x)
139
        x = paddle.squeeze(x, axis=[2])
140 141 142
        return x


143
class BMN(paddle.nn.Layer):
144
    def __init__(self, cfg):
145
        super().__init__()
146 147 148 149 150 151 152 153 154 155 156 157

        self.tscale = cfg.tscale
        self.dscale = cfg.dscale
        self.prop_boundary_ratio = cfg.prop_boundary_ratio
        self.num_sample = cfg.num_sample
        self.num_sample_perbin = cfg.num_sample_perbin

        self.hidden_dim_1d = 256
        self.hidden_dim_2d = 128
        self.hidden_dim_3d = 512

        # Base Module
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        self.b_conv1 = Conv1D(
            prefix="Base_1",
            num_channels=cfg.feat_dim,
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu",
        )
        self.b_conv2 = Conv1D(
            prefix="Base_2",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu",
        )
175 176

        # Temporal Evaluation Module
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        self.ts_conv1 = Conv1D(
            prefix="TEM_s1",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu",
        )
        self.ts_conv2 = Conv1D(
            prefix="TEM_s2", num_filters=1, size_k=1, padding=0, act="sigmoid"
        )
        self.te_conv1 = Conv1D(
            prefix="TEM_e1",
            num_filters=self.hidden_dim_1d,
            size_k=3,
            padding=1,
            groups=4,
            act="relu",
        )
        self.te_conv2 = Conv1D(
            prefix="TEM_e2", num_filters=1, size_k=1, padding=0, act="sigmoid"
        )

        # Proposal Evaluation Module
        self.p_conv1 = Conv1D(
            prefix="PEM_1d",
            num_filters=self.hidden_dim_2d,
            size_k=3,
            padding=1,
            act="relu",
        )
208 209

        # init to speed up
210 211 212 213 214 215 216
        sample_mask = get_interp1d_mask(
            self.tscale,
            self.dscale,
            self.prop_boundary_ratio,
            self.num_sample,
            self.num_sample_perbin,
        )
217 218
        self.sample_mask = fluid.dygraph.base.to_variable(sample_mask)
        self.sample_mask.stop_gradient = True
219

220 221 222 223
        self.p_conv3d1 = paddle.nn.Conv3D(
            in_channels=128,
            out_channels=self.hidden_dim_3d,
            kernel_size=(self.num_sample, 1, 1),
224 225
            stride=(self.num_sample, 1, 1),
            padding=0,
226 227
            weight_attr=paddle.ParamAttr(name="PEM_3d1_w"),
            bias_attr=paddle.ParamAttr(name="PEM_3d1_b"),
228
        )
229

230 231 232 233
        self.p_conv2d1 = paddle.nn.Conv2D(
            in_channels=512,
            out_channels=self.hidden_dim_2d,
            kernel_size=1,
234 235
            stride=1,
            padding=0,
236
            weight_attr=ParamAttr(name="PEM_2d1_w"),
237 238
            bias_attr=ParamAttr(name="PEM_2d1_b"),
        )
239 240 241 242
        self.p_conv2d2 = paddle.nn.Conv2D(
            in_channels=128,
            out_channels=self.hidden_dim_2d,
            kernel_size=3,
243 244
            stride=1,
            padding=1,
245
            weight_attr=ParamAttr(name="PEM_2d2_w"),
246 247
            bias_attr=ParamAttr(name="PEM_2d2_b"),
        )
248 249 250 251
        self.p_conv2d3 = paddle.nn.Conv2D(
            in_channels=128,
            out_channels=self.hidden_dim_2d,
            kernel_size=3,
252 253
            stride=1,
            padding=1,
254
            weight_attr=ParamAttr(name="PEM_2d3_w"),
255 256
            bias_attr=ParamAttr(name="PEM_2d3_b"),
        )
257 258 259 260
        self.p_conv2d4 = paddle.nn.Conv2D(
            in_channels=128,
            out_channels=2,
            kernel_size=1,
261 262
            stride=1,
            padding=0,
263
            weight_attr=ParamAttr(name="PEM_2d4_w"),
264 265
            bias_attr=ParamAttr(name="PEM_2d4_b"),
        )
266

A
Aurelius84 已提交
267
    @to_static
268 269
    def forward(self, x):
        # Base Module
270 271
        x = paddle.nn.functional.relu(self.b_conv1(x))
        x = paddle.nn.functional.relu(self.b_conv2(x))
272 273

        # TEM
274 275
        xs = paddle.nn.functional.relu(self.ts_conv1(x))
        xs = paddle.nn.functional.relu(self.ts_conv2(xs))
276
        xs = paddle.squeeze(xs, axis=[1])
277 278
        xe = paddle.nn.functional.relu(self.te_conv1(x))
        xe = paddle.nn.functional.relu(self.te_conv2(xe))
279
        xe = paddle.squeeze(xe, axis=[1])
280 281

        # PEM
282
        xp = paddle.nn.functional.relu(self.p_conv1(x))
283
        # BM layer
K
kangguangli 已提交
284
        xp = paddle.matmul(xp, self.sample_mask)
285
        xp = paddle.reshape(xp, shape=[0, 0, -1, self.dscale, self.tscale])
286 287

        xp = self.p_conv3d1(xp)
288
        xp = paddle.tanh(xp)
289
        xp = paddle.squeeze(xp, axis=[2])
290 291 292 293
        xp = paddle.nn.functional.relu(self.p_conv2d1(xp))
        xp = paddle.nn.functional.relu(self.p_conv2d2(xp))
        xp = paddle.nn.functional.relu(self.p_conv2d3(xp))
        xp = paddle.nn.functional.sigmoid(self.p_conv2d4(xp))
294 295 296
        return xp, xs, xe


297 298 299
def bmn_loss_func(
    pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, cfg
):
300 301 302 303 304
    def _get_mask(cfg):
        dscale = cfg.dscale
        tscale = cfg.tscale
        bm_mask = []
        for idx in range(dscale):
305 306 307
            mask_vector = [1 for i in range(tscale - idx)] + [
                0 for i in range(idx)
            ]
308 309
            bm_mask.append(mask_vector)
        bm_mask = np.array(bm_mask, dtype=np.float32)
310
        self_bm_mask = paddle.static.create_global_var(
311 312
            shape=[dscale, tscale], value=0, dtype=DATATYPE, persistable=True
        )
313
        paddle.assign(bm_mask, self_bm_mask)
314 315 316 317 318
        self_bm_mask.stop_gradient = True
        return self_bm_mask

    def tem_loss_func(pred_start, pred_end, gt_start, gt_end):
        def bi_loss(pred_score, gt_label):
319 320
            pred_score = paddle.reshape(x=pred_score, shape=[-1])
            gt_label = paddle.reshape(x=gt_label, shape=[-1])
321
            gt_label.stop_gradient = True
322 323 324
            pmask = paddle.cast(x=(gt_label > 0.5), dtype=DATATYPE)
            num_entries = paddle.cast(paddle.shape(pmask), dtype=DATATYPE)
            num_positive = paddle.cast(paddle.sum(pmask), dtype=DATATYPE)
325 326 327 328
            ratio = num_entries / num_positive
            coef_0 = 0.5 * ratio / (ratio - 1)
            coef_1 = 0.5 * ratio
            epsilon = 0.000001
329 330
            # temp = paddle.log(pred_score + epsilon)
            loss_pos = paddle.multiply(paddle.log(pred_score + epsilon), pmask)
331
            loss_pos = coef_1 * paddle.mean(loss_pos)
332
            loss_neg = paddle.multiply(
333
                paddle.log(1.0 - pred_score + epsilon), (1.0 - pmask)
334
            )
335
            loss_neg = coef_0 * paddle.mean(loss_neg)
336 337 338 339 340 341 342 343 344 345
            loss = -1 * (loss_pos + loss_neg)
            return loss

        loss_start = bi_loss(pred_start, gt_start)
        loss_end = bi_loss(pred_end, gt_end)
        loss = loss_start + loss_end
        return loss

    def pem_reg_loss_func(pred_score, gt_iou_map, mask):

346
        gt_iou_map = paddle.multiply(gt_iou_map, mask)
347

348
        u_hmask = paddle.cast(x=gt_iou_map > 0.7, dtype=DATATYPE)
349
        u_mmask = paddle.logical_and(gt_iou_map <= 0.7, gt_iou_map > 0.3)
350
        u_mmask = paddle.cast(x=u_mmask, dtype=DATATYPE)
351
        u_lmask = paddle.logical_and(gt_iou_map <= 0.3, gt_iou_map >= 0.0)
352
        u_lmask = paddle.cast(x=u_lmask, dtype=DATATYPE)
353
        u_lmask = paddle.multiply(u_lmask, mask)
354

355 356 357
        num_h = paddle.cast(paddle.sum(u_hmask), dtype=DATATYPE)
        num_m = paddle.cast(paddle.sum(u_mmask), dtype=DATATYPE)
        num_l = paddle.cast(paddle.sum(u_lmask), dtype=DATATYPE)
358 359

        r_m = num_h / num_m
360
        u_smmask = paddle.assign(
361
            local_random.uniform(
362 363 364
                0.0, 1.0, [gt_iou_map.shape[1], gt_iou_map.shape[2]]
            ).astype(DATATYPE)
        )
365
        u_smmask = paddle.multiply(u_mmask, u_smmask)
366
        u_smmask = paddle.cast(x=(u_smmask > (1.0 - r_m)), dtype=DATATYPE)
367 368

        r_l = num_h / num_l
369
        u_slmask = paddle.assign(
370
            local_random.uniform(
371 372 373
                0.0, 1.0, [gt_iou_map.shape[1], gt_iou_map.shape[2]]
            ).astype(DATATYPE)
        )
374
        u_slmask = paddle.multiply(u_lmask, u_slmask)
375
        u_slmask = paddle.cast(x=(u_slmask > (1.0 - r_l)), dtype=DATATYPE)
376 377 378

        weights = u_hmask + u_smmask + u_slmask
        weights.stop_gradient = True
379
        loss = paddle.nn.functional.square_error_cost(pred_score, gt_iou_map)
380
        loss = paddle.multiply(loss, weights)
381
        loss = 0.5 * paddle.sum(loss) / paddle.sum(weights)
382 383 384 385

        return loss

    def pem_cls_loss_func(pred_score, gt_iou_map, mask):
386
        gt_iou_map = paddle.multiply(gt_iou_map, mask)
387
        gt_iou_map.stop_gradient = True
388 389
        pmask = paddle.cast(x=(gt_iou_map > 0.9), dtype=DATATYPE)
        nmask = paddle.cast(x=(gt_iou_map <= 0.9), dtype=DATATYPE)
390
        nmask = paddle.multiply(nmask, mask)
391

392 393
        num_positive = paddle.sum(pmask)
        num_entries = num_positive + paddle.sum(nmask)
394 395 396 397
        ratio = num_entries / num_positive
        coef_0 = 0.5 * ratio / (ratio - 1)
        coef_1 = 0.5 * ratio
        epsilon = 0.000001
398
        loss_pos = paddle.multiply(paddle.log(pred_score + epsilon), pmask)
399
        loss_pos = coef_1 * paddle.sum(loss_pos)
400
        loss_neg = paddle.multiply(
401
            paddle.log(1.0 - pred_score + epsilon), nmask
402
        )
403
        loss_neg = coef_0 * paddle.sum(loss_neg)
404 405 406
        loss = -1 * (loss_pos + loss_neg) / num_entries
        return loss

407
    pred_bm_reg = paddle.squeeze(
2
201716010711 已提交
408
        paddle.slice(pred_bm, axes=[1], starts=[0], ends=[1]), axis=[1]
409
    )
410
    pred_bm_cls = paddle.squeeze(
2
201716010711 已提交
411
        paddle.slice(pred_bm, axes=[1], starts=[1], ends=[2]), axis=[1]
412
    )
413 414 415 416 417 418 419 420 421 422 423 424

    bm_mask = _get_mask(cfg)

    pem_reg_loss = pem_reg_loss_func(pred_bm_reg, gt_iou_map, bm_mask)
    pem_cls_loss = pem_cls_loss_func(pred_bm_cls, gt_iou_map, bm_mask)

    tem_loss = tem_loss_func(pred_start, pred_end, gt_start, gt_end)

    loss = tem_loss + 10 * pem_reg_loss + pem_cls_loss
    return loss, tem_loss, pem_reg_loss, pem_cls_loss


425
class Args:
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    epoch = 1
    batch_size = 4
    learning_rate = 0.1
    learning_rate_decay = 0.1
    lr_decay_iter = 4200
    l2_weight_decay = 1e-4
    valid_interval = 20
    log_interval = 5
    train_batch_num = valid_interval
    valid_batch_num = 5

    tscale = 50
    dscale = 50
    feat_dim = 100
    prop_boundary_ratio = 0.5
    num_sample = 2
    num_sample_perbin = 2


def optimizer(cfg, parameter_list):
    bd = [cfg.lr_decay_iter]
    base_lr = cfg.learning_rate
    lr_decay = cfg.learning_rate_decay
    l2_weight_decay = cfg.l2_weight_decay
    lr = [base_lr, base_lr * lr_decay]
    optimizer = fluid.optimizer.Adam(
452
        fluid.layers.piecewise_decay(boundaries=bd, values=lr),
453 454
        parameter_list=parameter_list,
        regularization=fluid.regularizer.L2DecayRegularizer(
455 456 457
            regularization_coeff=l2_weight_decay
        ),
    )
458 459 460 461 462
    return optimizer


def fake_data_reader(args, mode='train'):
    def iou_with_anchors(anchors_min, anchors_max, box_min, box_max):
463
        """Compute jaccard score between a box and the anchors."""
464 465 466
        len_anchors = anchors_max - anchors_min
        int_xmin = np.maximum(anchors_min, box_min)
        int_xmax = np.minimum(anchors_max, box_max)
467
        inter_len = np.maximum(int_xmax - int_xmin, 0.0)
468 469 470 471 472
        union_len = len_anchors - inter_len + box_max - box_min
        jaccard = np.divide(inter_len, union_len)
        return jaccard

    def ioa_with_anchors(anchors_min, anchors_max, box_min, box_max):
473
        """Compute intersection between score a box and the anchors."""
474 475 476
        len_anchors = anchors_max - anchors_min
        int_xmin = np.maximum(anchors_min, box_min)
        int_xmax = np.minimum(anchors_max, box_max)
477
        inter_len = np.maximum(int_xmax - int_xmin, 0.0)
478 479 480 481 482
        scores = np.divide(inter_len, len_anchors)
        return scores

    def get_match_map(tscale):
        match_map = []
483
        tgap = 1.0 / tscale
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        for idx in range(tscale):
            tmp_match_window = []
            xmin = tgap * idx
            for jdx in range(1, tscale + 1):
                xmax = xmin + tgap * jdx
                tmp_match_window.append([xmin, xmax])
            match_map.append(tmp_match_window)
        match_map = np.array(match_map)
        match_map = np.transpose(match_map, [1, 0, 2])
        match_map = np.reshape(match_map, [-1, 2])
        match_map = match_map
        anchor_xmin = [tgap * i for i in range(tscale)]
        anchor_xmax = [tgap * i for i in range(1, tscale + 1)]

        return match_map, anchor_xmin, anchor_xmax

    def get_video_label(match_map, anchor_xmin, anchor_xmax):
        video_second = local_random.randint(75, 90)
        label_num = local_random.randint(1, 3)

        gt_bbox = []
        gt_iou_map = []
        for idx in range(label_num):
507 508 509 510 511 512
            duration = local_random.uniform(
                video_second * 0.4, video_second * 0.8
            )
            start_t = local_random.uniform(
                0.1 * video_second, video_second - duration
            )
513 514 515
            tmp_start = max(min(1, start_t / video_second), 0)
            tmp_end = max(min(1, (start_t + duration) / video_second), 0)
            gt_bbox.append([tmp_start, tmp_end])
516 517 518 519 520 521
            tmp_gt_iou_map = iou_with_anchors(
                match_map[:, 0], match_map[:, 1], tmp_start, tmp_end
            )
            tmp_gt_iou_map = np.reshape(
                tmp_gt_iou_map, [args.dscale, args.tscale]
            )
522 523 524 525 526 527 528
            gt_iou_map.append(tmp_gt_iou_map)
        gt_iou_map = np.array(gt_iou_map)
        gt_iou_map = np.max(gt_iou_map, axis=0)

        gt_bbox = np.array(gt_bbox)
        gt_xmins = gt_bbox[:, 0]
        gt_xmaxs = gt_bbox[:, 1]
529
        gt_len_small = 3.0 / args.tscale
530
        gt_start_bboxs = np.stack(
531 532
            (gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1
        )
533
        gt_end_bboxs = np.stack(
534 535
            (gt_xmaxs - gt_len_small / 2, gt_xmaxs + gt_len_small / 2), axis=1
        )
536 537 538 539 540

        match_score_start = []
        for jdx in range(len(anchor_xmin)):
            match_score_start.append(
                np.max(
541 542 543 544 545 546 547 548
                    ioa_with_anchors(
                        anchor_xmin[jdx],
                        anchor_xmax[jdx],
                        gt_start_bboxs[:, 0],
                        gt_start_bboxs[:, 1],
                    )
                )
            )
549 550 551 552
        match_score_end = []
        for jdx in range(len(anchor_xmin)):
            match_score_end.append(
                np.max(
553 554 555 556 557 558 559 560
                    ioa_with_anchors(
                        anchor_xmin[jdx],
                        anchor_xmax[jdx],
                        gt_end_bboxs[:, 0],
                        gt_end_bboxs[:, 1],
                    )
                )
            )
561 562 563 564 565 566 567 568 569 570 571 572

        gt_start = np.array(match_score_start)
        gt_end = np.array(match_score_end)
        return gt_iou_map, gt_start, gt_end

    def reader():
        batch_out = []
        iter_num = args.batch_size * 100
        match_map, anchor_xmin, anchor_xmax = get_match_map(args.tscale)

        for video_idx in range(iter_num):
            video_feat = local_random.random_sample(
573 574
                [args.feat_dim, args.tscale]
            ).astype('float32')
575
            gt_iou_map, gt_start, gt_end = get_video_label(
576 577
                match_map, anchor_xmin, anchor_xmax
            )
578 579 580 581 582

            if mode == 'train' or mode == 'valid':
                batch_out.append((video_feat, gt_iou_map, gt_start, gt_end))
            elif mode == 'test':
                batch_out.append(
583 584
                    (video_feat, gt_iou_map, gt_start, gt_end, video_idx)
                )
585
            else:
586
                raise NotImplementedError(f'mode {mode} not implemented')
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
            if len(batch_out) == args.batch_size:
                yield batch_out
                batch_out = []

    return reader


# Validation
def val_bmn(model, args):
    val_reader = fake_data_reader(args, 'valid')

    loss_data = []
    for batch_id, data in enumerate(val_reader()):
        video_feat = np.array([item[0] for item in data]).astype(DATATYPE)
        gt_iou_map = np.array([item[1] for item in data]).astype(DATATYPE)
        gt_start = np.array([item[2] for item in data]).astype(DATATYPE)
        gt_end = np.array([item[3] for item in data]).astype(DATATYPE)

        x_data = to_variable(video_feat)
        gt_iou_map = to_variable(gt_iou_map)
        gt_start = to_variable(gt_start)
        gt_end = to_variable(gt_end)
        gt_iou_map.stop_gradient = True
        gt_start.stop_gradient = True
        gt_end.stop_gradient = True

        pred_bm, pred_start, pred_end = model(x_data)

        loss, tem_loss, pem_reg_loss, pem_cls_loss = bmn_loss_func(
616 617
            pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, args
        )
618
        avg_loss = paddle.mean(loss)
619 620

        loss_data += [
621 622 623 624
            float(avg_loss),
            float(tem_loss),
            float(pem_reg_loss),
            float(pem_cls_loss),
625 626
        ]

627
        print(
628
            f'[VALID] iter {batch_id} '
629
            + '\tLoss = {}, \ttem_loss = {}, \tpem_reg_loss = {}, \tpem_cls_loss = {}'.format(
630 631 632 633
                '%f' % float(avg_loss),
                '%f' % float(tem_loss),
                '%f' % float(pem_reg_loss),
                '%f' % float(pem_cls_loss),
634 635
            )
        )
636 637 638 639 640 641 642 643 644

        if batch_id == args.valid_batch_num:
            break
    return loss_data


class TestTrain(unittest.TestCase):
    def setUp(self):
        self.args = Args()
645 646 647
        self.place = (
            fluid.CPUPlace()
            if not fluid.is_compiled_with_cuda()
648
            else fluid.CUDAPlace(0)
649
        )
650

651 652 653 654 655 656 657 658 659 660 661
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_save_dir = os.path.join(self.temp_dir.name, 'inference')
        self.model_save_prefix = os.path.join(self.model_save_dir, 'bmn')
        self.model_filename = "bmn" + INFER_MODEL_SUFFIX
        self.params_filename = "bmn" + INFER_PARAMS_SUFFIX
        self.dy_param_path = os.path.join(self.temp_dir.name, 'bmn_dy_param')

    def tearDown(self):
        self.temp_dir.cleanup()

    def train_bmn(self, args, place, to_static):
R
Ryan 已提交
662
        paddle.jit.enable_to_static(to_static)
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
        loss_data = []

        with fluid.dygraph.guard(place):
            paddle.seed(SEED)
            paddle.framework.random._manual_program_seed(SEED)
            global local_random
            local_random = np.random.RandomState(SEED)

            bmn = BMN(args)
            adam = optimizer(args, parameter_list=bmn.parameters())

            train_reader = fake_data_reader(args, 'train')

            for epoch in range(args.epoch):
                for batch_id, data in enumerate(train_reader()):
678 679 680 681 682 683 684 685 686 687 688 689
                    video_feat = np.array([item[0] for item in data]).astype(
                        DATATYPE
                    )
                    gt_iou_map = np.array([item[1] for item in data]).astype(
                        DATATYPE
                    )
                    gt_start = np.array([item[2] for item in data]).astype(
                        DATATYPE
                    )
                    gt_end = np.array([item[3] for item in data]).astype(
                        DATATYPE
                    )
690 691 692 693 694 695 696 697 698 699 700 701

                    x_data = to_variable(video_feat)
                    gt_iou_map = to_variable(gt_iou_map)
                    gt_start = to_variable(gt_start)
                    gt_end = to_variable(gt_end)
                    gt_iou_map.stop_gradient = True
                    gt_start.stop_gradient = True
                    gt_end.stop_gradient = True

                    pred_bm, pred_start, pred_end = bmn(x_data)

                    loss, tem_loss, pem_reg_loss, pem_cls_loss = bmn_loss_func(
702 703 704 705 706 707 708 709
                        pred_bm,
                        pred_start,
                        pred_end,
                        gt_iou_map,
                        gt_start,
                        gt_end,
                        args,
                    )
710
                    avg_loss = paddle.mean(loss)
711 712 713 714 715 716

                    avg_loss.backward()
                    adam.minimize(avg_loss)
                    bmn.clear_gradients()
                    # log loss data to verify correctness
                    loss_data += [
717 718 719 720
                        float(avg_loss),
                        float(tem_loss),
                        float(pem_reg_loss),
                        float(pem_cls_loss),
721 722
                    ]

723 724 725 726
                    if args.log_interval > 0 and (
                        batch_id % args.log_interval == 0
                    ):
                        print(
727
                            f'[TRAIN] Epoch {epoch}, iter {batch_id} '
728
                            + '\tLoss = {}, \ttem_loss = {}, \tpem_reg_loss = {}, \tpem_cls_loss = {}'.format(
729 730 731 732
                                '%f' % float(avg_loss),
                                '%f' % float(tem_loss),
                                '%f' % float(pem_reg_loss),
                                '%f' % float(pem_cls_loss),
733 734
                            )
                        )
735 736 737 738 739 740 741 742 743 744

                    # validation
                    if batch_id % args.valid_interval == 0 and batch_id > 0:
                        bmn.eval()
                        val_loss_data = val_bmn(bmn, args)
                        bmn.train()
                        loss_data += val_loss_data

                    if batch_id == args.train_batch_num:
                        if to_static:
745
                            paddle.jit.save(bmn, self.model_save_prefix)
746
                        else:
747 748 749
                            paddle.save(
                                bmn.state_dict(),
                                self.dy_param_path + '.pdparams',
750
                            )
751 752 753
                        break
            return np.array(loss_data)

754 755
    def test_train(self):

756 757
        static_res = self.train_bmn(self.args, self.place, to_static=True)
        dygraph_res = self.train_bmn(self.args, self.place, to_static=False)
758 759 760 761 762
        np.testing.assert_allclose(
            dygraph_res,
            static_res,
            rtol=1e-05,
            err_msg='dygraph_res: {},\n static_res: {}'.format(
763
                dygraph_res[~np.isclose(dygraph_res, static_res)],
764 765 766 767
                static_res[~np.isclose(dygraph_res, static_res)],
            ),
            atol=1e-8,
        )
768 769 770 771 772 773 774 775 776 777 778 779

        # Prediction needs trained models, so put `test_predict` at last of `test_train`
        self.verify_predict()

    def verify_predict(self):
        args = Args()
        args.batch_size = 1  # change batch_size
        test_reader = fake_data_reader(args, 'test')
        for batch_id, data in enumerate(test_reader()):
            video_data = np.array([item[0] for item in data]).astype(DATATYPE)
            static_pred_res = self.predict_static(video_data)
            dygraph_pred_res = self.predict_dygraph(video_data)
780
            dygraph_jit_pred_res = self.predict_dygraph_jit(video_data)
781
            predictor_pred_res = self.predict_analysis_inference(video_data)
782

783
            for dy_res, st_res, dy_jit_res, predictor_res in zip(
784 785 786 787 788
                dygraph_pred_res,
                static_pred_res,
                dygraph_jit_pred_res,
                predictor_pred_res,
            ):
789 790 791 792 793
                np.testing.assert_allclose(
                    st_res,
                    dy_res,
                    rtol=1e-05,
                    err_msg='dygraph_res: {},\n static_res: {}'.format(
794
                        dy_res[~np.isclose(st_res, dy_res)],
795 796 797 798
                        st_res[~np.isclose(st_res, dy_res)],
                    ),
                    atol=1e-8,
                )
799 800 801 802 803
                np.testing.assert_allclose(
                    st_res,
                    dy_jit_res,
                    rtol=1e-05,
                    err_msg='dygraph_jit_res: {},\n static_res: {}'.format(
804
                        dy_jit_res[~np.isclose(st_res, dy_jit_res)],
805 806 807 808
                        st_res[~np.isclose(st_res, dy_jit_res)],
                    ),
                    atol=1e-8,
                )
809 810 811 812 813
                np.testing.assert_allclose(
                    st_res,
                    predictor_res,
                    rtol=1e-05,
                    err_msg='dygraph_jit_res: {},\n static_res: {}'.format(
814
                        predictor_res[~np.isclose(st_res, predictor_res)],
815 816 817 818
                        st_res[~np.isclose(st_res, predictor_res)],
                    ),
                    atol=1e-8,
                )
819 820 821
            break

    def predict_dygraph(self, data):
R
Ryan 已提交
822
        paddle.jit.enable_to_static(False)
823 824 825
        with fluid.dygraph.guard(self.place):
            bmn = BMN(self.args)
            # load dygraph trained parameters
826
            model_dict = paddle.load(self.dy_param_path + ".pdparams")
827 828 829 830 831 832 833 834 835 836
            bmn.set_dict(model_dict)
            bmn.eval()

            x = to_variable(data)
            pred_res = bmn(x)
            pred_res = [var.numpy() for var in pred_res]

            return pred_res

    def predict_static(self, data):
837
        paddle.enable_static()
838 839
        exe = fluid.Executor(self.place)
        # load inference model
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(
            self.model_save_dir,
            executor=exe,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
        )
        pred_res = exe.run(
            inference_program,
            feed={feed_target_names[0]: data},
            fetch_list=fetch_targets,
        )
855 856 857

        return pred_res

858 859
    def predict_dygraph_jit(self, data):
        with fluid.dygraph.guard(self.place):
860
            bmn = paddle.jit.load(self.model_save_prefix)
861 862 863 864 865 866 867 868
            bmn.eval()

            x = to_variable(data)
            pred_res = bmn(x)
            pred_res = [var.numpy() for var in pred_res]

            return pred_res

869
    def predict_analysis_inference(self, data):
870 871 872 873 874 875
        output = PredictorTools(
            self.model_save_dir,
            self.model_filename,
            self.params_filename,
            [data],
        )
876 877 878
        out = output()
        return out

879 880

if __name__ == "__main__":
881
    unittest.main()