linear_chain_crf_op.cc 22.7 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/linear_chain_crf_op.h"

namespace paddle {
namespace operators {

C
caoying03 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
namespace {
template <typename T>
T NormalizeL1(T* x, size_t len) {
  T sum = 0.;
  for (size_t i = 0; i < len; ++i) sum += x[i];
  // (This comment is from the old LinearChainCRFLayer.)
  // Right now, we just bet that sum won't be zero. If this really happens, we
  // will figure out what should be done then.
  PADDLE_ENFORCE(sum,
                 "The unnormalized probabilites of all possible unfinished "
                 "sequences must be greater than 0.");
  for (size_t i = 0; i < len; ++i) x[i] /= sum;
  return sum;
}
}  // namespace

36 37 38
using framework::LoDTensor;
using framework::LoD;

C
caoying03 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class LinearChainCrfOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LinearChainCrfOpMaker(framework::OpProto* proto,
                        framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "Emission",
        "(LoDTensor, default: LoDTensor<float>). "
        "The unscaled emission weight matrix for the linear chain CRF. "
        "This input is a LoDTensor with shape [N x D] where N is the total "
        "element number of all input squences in a mini-batch, "
        "and D is the total tag number.");
    AddInput(
        "Transition",
        "(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
        "The learnable parameter for linear_chain_crf operator. "
        "See more details in the operator's comments.");
    AddInput(
        "Label",
        "(LoDTensor, default: LoDTensor<int>). The ground truth which is a 2-D "
        "LoDTensor with shape [N x 1], where N is the total element number in "
        "a mini-batch.");
    AddOutput(
        "Alpha",
        "Tensor, default: Tensor<float>. The forward vectors for the entire "
        "batch. A two dimensional tensor with shape [N x D], "
        "denoted as \f$\alpha\f$. \f$\alpha$\f is a memo table used to "
        "calculate the normalization factor in CRF. \f$\alpha[k, v]$\f stores "
        "the unnormalized probabilites of all possible unfinished sequences of "
        "tags that end at position \f$k$\f with tag \f$v$\f. For each \f$k$\f, "
        "\f$\alpha[k, v]$\f is a vector of length \f$D$\f with a component for "
        "each tag value \f$v$\f. This vector is called a forward vecotr and "
        "will also be used in backward computations.")
        .AsIntermediate();
C
caoying03 已提交
73 74 75 76 77 78 79 80 81 82
    AddOutput("EmissionExps",
              "The exponentials of Input(Emission). This is an intermediate "
              "computational result in forward computation, and will be reused "
              "in backward computation.")
        .AsIntermediate();
    AddOutput("TransitionExps",
              "The exponentials of Input(Transition). This is an intermediate "
              "computational result in forward computation, and will be reused "
              "in backward computation.")
        .AsIntermediate();
C
caoying03 已提交
83 84
    AddOutput(
        "LogLikelihood",
C
caoying03 已提交
85 86
        "(Tensor, default: Tensor<float>). The logarithm of the "
        "conditional "
C
caoying03 已提交
87 88 89
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
        "mini-batch. "
C
caoying03 已提交
90 91
        "Note: S is equal to the sequence number in a mini-batch. The "
        "output "
C
caoying03 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        "is no longer a LoDTensor.");
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability \f$P(Y|X)\f$, where
\f$X = (x_1, x_2, ... , x_n)\f$ are structured inputs and
\f$Y = (y_1, y_2, ... , y_n)\f$ are labels for the inputs.

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
independences among inputs. They only concern about the input and the output
being linear sequences. Thus, the graph model of CRF is a simple chain or
a line, which results in a linear chain CRF.

This operator implements the Forward-Backward algorithm for linear chain CRF.
Please see http://www.cs.columbia.edu/~mcollins/fb.pdf for reference.

Equation:

111 112 113 114 115 116 117 118
- Denote Input(Emission) to this operator as \f$x\f$ here.
- The first D values of Input(Transition) to this operator are for starting
weights, denoted as \f$a\f$ here.
- The next D values of Input(Transition) of this operator are for ending
weights, denoted as \f$b\f$ here.
- The remaning values of Input(Transition) are for transition weights,
denoted as \f$w\f$ here.
- Denote Input(Label) as \f$s\f$ here.
C
caoying03 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as:
\f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L}
                 + \sum_{l=1}^L x_{s_l}
                 + \sum_{l=2}^L w_{s_{l-1},s_l})\f$
where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over
all possible sequences is \f$1\f$, and \f$x\f$ is the emission feature weight
to the linear chain CRF.

Finaly, the linear chain CRF operator outputs the logarithm of the conditional
likelihood of each training sample in a mini-batch.

NOTE:
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

2. Because this operator performs globally normaliztion over all possible
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

141
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
142 143 144 145 146 147 148 149 150

)DOC");
  }
};

class LinearChainCrfOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
151 152 153 154 155 156 157 158 159
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
160 161 162 163
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
164 165 166 167 168 169 170 171
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

    auto emission_dims = ctx->GetInputDim("Emission");
    auto transition_dims = ctx->GetInputDim("Transition");
    auto label_dims = ctx->GetInputDim("Label");

    PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL,
172
                      "The Input(Emission) should be a 2-D tensor.");
C
caoying03 已提交
173
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL,
174
                      "The Input(Transition) should be a 2-D tensor.");
C
caoying03 已提交
175
    PADDLE_ENFORCE_EQ(
176 177
        transition_dims[0] - 2, transition_dims[1],
        "An invalid dimension for the Input(Transition), which should "
C
caoying03 已提交
178
        "be a 2-D tensor with shape [(D + 2) x D].");
C
caoying03 已提交
179 180
    PADDLE_ENFORCE_EQ(
        emission_dims[1], transition_dims[1],
181
        "The 2nd dimension of the Input(Emission) and the Input(Transition) "
C
caoying03 已提交
182 183
        "should be equal to the tag number.");
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
184 185 186 187 188 189
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_dims[0], label_dims[0],
        "The height of Input(Emission) and the height of Input(Label) "
        "should be the same.");
C
caoying03 已提交
190 191

    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
192 193
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
194 195 196
    // (TODO caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
    // is the sequence number in a mini-batch. The dimension set here should be
    // resized to its correct size in the function Compute.
C
caoying03 已提交
197
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
C
caoying03 已提交
198 199

    ctx->ShareLoD("Emission", /*->*/ "EmissionExps");
C
caoying03 已提交
200 201
  }

C
caoying03 已提交
202
 protected:
203 204
  // Explicitly set that the data type of output of the linear_chain_crf
  // operator is determined by its input "Emission".
C
caoying03 已提交
205 206 207 208
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("Emission")->type());
  }
C
caoying03 已提交
209 210
};

211 212 213 214 215 216 217 218 219
template <typename T>
class LinearChainCrfOpKernel<platform::CPUPlace, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "This kernel only runs on CPU.");
    auto* emission_weights = ctx.Input<LoDTensor>("Emission");
    auto* transition_weights = ctx.Input<Tensor>("Transition");
C
caoying03 已提交
220 221 222 223
    auto* emission_exps = ctx.Output<LoDTensor>("EmissionExps");
    emission_exps->mutable_data<T>(platform::CPUPlace());
    auto* transition_exps = ctx.Output<Tensor>("TransitionExps");
    transition_exps->mutable_data<T>(platform::CPUPlace());
224 225 226 227 228 229 230 231 232 233 234 235
    auto* label = ctx.Input<LoDTensor>("Label");

    auto in_lod = emission_weights->lod();
    // TODO(caoying) The checks related to LoD information should be
    // moved into InferShape once after the InferShape is refactored.
    PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL,
                      "The Input(Emission) should be a sequence.");
    PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL,
                      "The Input(Label) should be a sequence.");
    const size_t level = 0;

    auto emission_dims = emission_weights->dims();
C
caoying03 已提交
236 237
    const size_t batch_size = emission_dims[0];
    const size_t tag_num = emission_dims[1];
238 239 240 241
    const size_t seq_num = in_lod[level].size() - 1;

    Tensor emission_row_max;
    emission_row_max.mutable_data<T>(
C
caoying03 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        framework::make_ddim({static_cast<int>(batch_size), 1}),
        platform::CPUPlace());

    auto place = ctx.GetEigenDevice<platform::CPUPlace>();
    auto x = EigenMatrix<T>::From(*emission_weights);
    auto x_row_max = EigenMatrix<T>::From(emission_row_max);
    x_row_max.device(place) =
        x.maximum(Eigen::DSizes<int, 1>(1))
            .reshape(Eigen::DSizes<int, 2>(int(batch_size), 1));

    auto x_exps = EigenMatrix<T>::From(*emission_exps);
    x_exps.device(place) =
        (x - x_row_max.broadcast(Eigen::DSizes<int, 2>(1, tag_num))).exp();

    auto w = EigenMatrix<T>::From(*transition_weights);
    auto w_exps = EigenMatrix<T>::From(*transition_exps);
    w_exps.device(place) = w.exp();
259

C
caoying03 已提交
260
    auto* alpha = ctx.Output<LoDTensor>("Alpha");
261
    alpha->mutable_data<T>(ctx.GetPlace());
C
caoying03 已提交
262
    auto* ll = ctx.Output<LoDTensor>("LogLikelihood");
263 264 265 266 267 268 269 270 271
    // resize the output tensor to the correct dimension.
    ll->Resize({static_cast<int>(seq_num), 1});
    T* log_likelihood = ll->mutable_data<T>(ctx.GetPlace());
    for (size_t i = 0; i < seq_num; ++i) {
      int start_pos = static_cast<int>(in_lod[level][i]);
      int end_pos = static_cast<int>(in_lod[level][i + 1]);

      const Tensor one_seq = emission_weights->Slice<T>(start_pos, end_pos);
      Tensor one_seq_row_max = emission_row_max.Slice<T>(start_pos, end_pos);
C
caoying03 已提交
272
      Tensor one_seq_exps = emission_exps->Slice<T>(start_pos, end_pos);
273 274 275 276
      const Tensor one_seq_label = label->Slice<T>(start_pos, end_pos);
      Tensor one_seq_alpha = alpha->Slice<T>(start_pos, end_pos);

      log_likelihood[i] = ForwardOneSequence(
C
caoying03 已提交
277 278
          &one_seq, &one_seq_row_max, &one_seq_exps, transition_weights,
          transition_exps, &one_seq_label, &one_seq_alpha);
279 280 281 282
    }
  }

 protected:
C
caoying03 已提交
283 284 285 286 287 288 289 290 291 292 293 294
  T ForwardOneSequence(const Tensor* emission, const Tensor* emission_row_max,
                       const Tensor* emission_exps, const Tensor* trans_weights,
                       const Tensor* trans_weight_exps, const Tensor* label,
                       Tensor* alpha) const {
    const T* x = emission->data<T>();
    const T* x_row_max = emission_row_max->data<T>();
    const T* x_exps = emission_exps->data<T>();
    const T* w = trans_weights->data<T>();
    const T* w_exps = trans_weight_exps->data<T>();
    T* alpha_value = alpha->data<T>();

    auto x_dims = emission->dims();
295 296 297 298 299
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    // The 1st row of w are transition weights for start mask.
    // The 2nd row of w are transition weights for end mask.
    // Transition weights among other tags begins from the 3rd row of w.
C
caoying03 已提交
300
    const size_t state_trans_base_idx = 2;
301 302

    for (size_t i = 0; i < tag_num; ++i) {
C
caoying03 已提交
303
      alpha_value[i] = w_exps[i] * x_exps[i];
304
    }
C
caoying03 已提交
305
    T ll = -x_row_max[0] - std::log(NormalizeL1<T>(alpha_value, tag_num));
306 307 308 309 310 311

    for (size_t k = 1; k < seq_length; ++k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
          sum += alpha_value[(k - 1) * tag_num + j] *
C
caoying03 已提交
312
                 w_exps[(j + state_trans_base_idx) * tag_num + i];
313
        }
C
caoying03 已提交
314
        alpha_value[k * tag_num + i] = x_exps[k * tag_num + i] * sum;
315
      }
C
caoying03 已提交
316 317
      ll -= x_row_max[k] +
            std::log(NormalizeL1<T>(alpha_value + k * tag_num, tag_num));
318 319 320
    }
    T sum = 0.;
    for (size_t i = 0; i < tag_num; ++i) {
C
caoying03 已提交
321
      sum += alpha_value[(seq_length - 1) * tag_num + i] * w_exps[tag_num + i];
322 323 324
    }
    ll -= std::log(sum);

C
caoying03 已提交
325
    const int* lbl = label->data<int>();
326 327 328 329
    PADDLE_ENFORCE_LT(
        *std::max_element(lbl, lbl + seq_length), tag_num,
        "An invalid tag label that execesses the largest tag number.");
    // Calculate the nominator part, which depends on the label sequence.
C
caoying03 已提交
330 331
    ll += w[lbl[0]] /*start transition*/ + x[lbl[0]] +
          w[tag_num + lbl[seq_length - 1]] /*end transition*/;
332
    for (size_t k = 1; k < seq_length; ++k)
C
caoying03 已提交
333
      ll += x[k * tag_num + lbl[k]] + w[lbl[k - 1] * tag_num + lbl[k]];
334 335 336 337
    return -ll;
  }
};

C
caoying03 已提交
338 339 340 341
class LinearChainCrfGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Emission")),
                   "Output(Emission@GRAD) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Transition")),
                   "Output(Transition@GRAD) should be not null.");

    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
    auto transition_exps_dims =
        ctx->GetInputDim(framework::GradVarName("TransitionExps"));
    auto label_dims = ctx->GetInputDim("Label");

    PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2UL,
                      "The Input(EmissionExps) should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2UL,
                      "The Input(TransitionExps) should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(
        transition_exps_dims[0] - 2, transition_exps_dims[1],
        "An invalid dimension for the Input(TransitionExps), which should "
        "be a 2-D tensor with shape [(D + 2) x D].");
    PADDLE_ENFORCE_EQ(
        emission_exps_dims[1], transition_exps_dims[1],
        "The 2nd dimension of the Input(EmissionExps) and the "
        "Input(TransitionExps) should be equal to the tag number.");
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_exps_dims[0], label_dims[0],
        "The height of Input(EmissionExps) and the height of Input(Label) "
        "should be the same.");

    ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
    ctx->SetOutputDim(framework::GradVarName("Transition"),
                      transition_exps_dims);
  }
C
caoying03 已提交
384 385
};

386 387 388 389 390 391 392
template <typename T>
class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "This kernel only runs on CPU.");
C
caoying03 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    auto* ll_grad =
        ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"));
    auto* label = ctx.Input<LoDTensor>("Label");
    auto* emission_exps = ctx.Input<LoDTensor>("EmissionExps");
    auto* transition_exps = ctx.Input<Tensor>("TransitionExps");
    auto* alpha = ctx.Input<Tensor>("Alpha");

    auto* emission_grad =
        ctx.Output<Tensor>(framework::GradVarName("Emission"));
    emission_grad->mutable_data<T>(platform::CPUPlace());

    auto* trans_grad = ctx.Output<Tensor>(framework::GradVarName("Transition"));
    if (trans_grad) trans_grad->mutable_data<T>(platform::CPUPlace());

    auto emission_dims = emission_exps->dims();

    // Beta is the memo table used in dynamic programming to calculate the
    // backwark vectors. For a backward vector i (the i-th row of beta), it
    // captures the unnormalized probabilities of partial sequences starting at
    // position i.
    Tensor beta;
    beta.mutable_data<T>(emission_dims, platform::CPUPlace());

    auto place = ctx.GetEigenDevice<platform::CPUPlace>();
    auto x_grad = EigenMatrix<T>::From(*emission_grad);
    auto out_grad = EigenMatrix<T>::From(*ll_grad);
    x_grad.device(place) =
        x_grad * out_grad.broadcast(Eigen::DSizes<int, 2>(1, emission_dims[1]));

    const size_t level = 0;  // currently, only support sequence.
    auto lod = emission_exps->lod();
    for (size_t i = 0; i < lod[level].size() - 1; ++i) {
      int start_pos = static_cast<int>(lod[level][i]);
      int end_pos = static_cast<int>(lod[level][i + 1]);

      const Tensor one_seq_emission_exps =
          emission_exps->Slice<T>(start_pos, end_pos);
      const Tensor one_seq_label = label->Slice<T>(start_pos, end_pos);
      const Tensor one_seq_alpha = alpha->Slice<T>(start_pos, end_pos);
      Tensor one_seq_beta = beta.Slice<T>(start_pos, end_pos);
      Tensor one_seq_emission_grad =
          emission_grad->Slice<T>(start_pos, end_pos);

      BackwardOneSequence(ctx.device_context(), &one_seq_emission_exps,
                          transition_exps, &one_seq_alpha, &one_seq_label,
                          &one_seq_beta, trans_grad, &one_seq_emission_grad);
    }
  }

 protected:
  void BackwardOneSequence(const platform::DeviceContext& ctx,
                           const Tensor* emission_exps,
                           const Tensor* transition_exps, const Tensor* alpha,
                           const Tensor* label, Tensor* beta,
                           Tensor* transition_grad,
                           Tensor* emission_grad) const {
    const T* w_exps = transition_exps->data<T>();
    const T* x_exps = emission_exps->data<T>();
    const int* label_value = label->data<int>();
    T* beta_value = beta->data<T>();

    auto x_dims = emission_exps->dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    const size_t state_trans_base_idx = 2;

    // Calculate the backwark vectors beta.
    for (int i = 0; i < tag_num; ++i)
      beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i];
    NormalizeL1<T>(beta_value + (seq_length - 1) * tag_num, tag_num);

    for (int k = seq_length - 2; k >= 0; --k) {
      for (int i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (int j = 0; j < tag_num; ++j) {
          sum += x_exps[(i + state_trans_base_idx) * tag_num + j] *
                 beta_value[(k + 1) * tag_num + j] *
                 x_exps[(k + 1) * tag_num + j];
        }
        beta_value[k * tag_num + i] = sum;
      }
      NormalizeL1<T>(beta_value + k * tag_num, tag_num);
    }

    auto alpha_mat = EigenMatrix<T>::From(*alpha);
    auto beta_mat = EigenMatrix<T>::From(*beta);
    auto x_grad_mat = EigenMatrix<T>::From(*emission_grad);

    auto* place = ctx.GetEigenDevice<platform::CPUPlace>();
    x_grad_mat.device(*place) = alpha_mat * beta_mat;
    x_grad_mat /= x_grad_mat.sum(Eigen::DSizes<int, 1>(1))
                      .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                      .broadcast(Eigen::DSizes<int, 2>(1, tag_num));

    for (int k = 0; k < seq_length; ++k)
      x_grad_mat(k, label_value[k]) -= static_cast<T>(1);

    if (transition_grad) {
      T* trans_grad = transition_grad->data<T>();
      for (size_t k = 0; k < tag_num; ++k) {
        trans_grad[k] += x_grad_mat(/*from start state*/ 0, k);
        trans_grad[tag_num + k] +=
            x_grad_mat(/*to end state*/ seq_length - 1, k);
      }

      auto x_exps_mat = EigenMatrix<T>::From(*emission_exps);
      beta_mat = beta_mat * x_exps_mat;
      beta_mat /= beta_mat.sum(Eigen::DSizes<int, 1>(1))
                      .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                      .broadcast(Eigen::DSizes<int, 2>(1, tag_num));

      for (int k = 1; k < seq_length; ++k) {
        T sum = 0.;
        for (int i = 0; i < tag_num; ++i) {
          for (int j = 0; j < tag_num; ++j)
            sum += x_exps_mat(i, j) * alpha_mat(k - 1, i) * beta_mat(k, j);
        }
        sum = static_cast<T>(1) / sum;
        for (int i = 0; i < tag_num; ++i) {
          for (int j = 0; j < tag_num; ++j) {
            trans_grad[(i + 2) * tag_num + j] +=
                sum * x_exps_mat(i, j) * alpha_mat(k - 1, i) * beta_mat(k, j);
          }
        }
        trans_grad[label_value[k - 1] * tag_num + label_value[k]] -=
            static_cast<T>(1);
      }
    }
521 522 523
  }
};

C
caoying03 已提交
524 525 526 527 528 529
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(linear_chain_crf, ops::LinearChainCrfOp, ops::LinearChainCrfOpMaker,
            linear_chain_crf_grad, ops::LinearChainCrfGradOp);
530 531 532 533 534 535
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
    ops::LinearChainCrfOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
    ops::LinearChainCrfGradOpKernel<paddle::platform::CPUPlace, float>);