linear_chain_crf_op.cc 14.7 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/linear_chain_crf_op.h"

namespace paddle {
namespace operators {

20 21 22
using framework::LoDTensor;
using framework::LoD;

C
caoying03 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
class LinearChainCrfOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LinearChainCrfOpMaker(framework::OpProto* proto,
                        framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "Emission",
        "(LoDTensor, default: LoDTensor<float>). "
        "The unscaled emission weight matrix for the linear chain CRF. "
        "This input is a LoDTensor with shape [N x D] where N is the total "
        "element number of all input squences in a mini-batch, "
        "and D is the total tag number.");
    AddInput(
        "Transition",
        "(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
        "The learnable parameter for linear_chain_crf operator. "
        "See more details in the operator's comments.");
    AddInput(
        "Label",
        "(LoDTensor, default: LoDTensor<int>). The ground truth which is a 2-D "
        "LoDTensor with shape [N x 1], where N is the total element number in "
        "a mini-batch.");
    AddOutput(
        "Alpha",
        "Tensor, default: Tensor<float>. The forward vectors for the entire "
        "batch. A two dimensional tensor with shape [N x D], "
        "denoted as \f$\alpha\f$. \f$\alpha$\f is a memo table used to "
        "calculate the normalization factor in CRF. \f$\alpha[k, v]$\f stores "
        "the unnormalized probabilites of all possible unfinished sequences of "
        "tags that end at position \f$k$\f with tag \f$v$\f. For each \f$k$\f, "
        "\f$\alpha[k, v]$\f is a vector of length \f$D$\f with a component for "
        "each tag value \f$v$\f. This vector is called a forward vecotr and "
        "will also be used in backward computations.")
        .AsIntermediate();
    AddOutput(
        "LogLikelihood",
        "(Tensor, default: Tensor<float>). The logarithm of the conditional "
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
        "mini-batch. "
        "Note: S is equal to the sequence number in a mini-batch. The output "
        "is no longer a LoDTensor.");
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability \f$P(Y|X)\f$, where
\f$X = (x_1, x_2, ... , x_n)\f$ are structured inputs and
\f$Y = (y_1, y_2, ... , y_n)\f$ are labels for the inputs.

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
independences among inputs. They only concern about the input and the output
being linear sequences. Thus, the graph model of CRF is a simple chain or
a line, which results in a linear chain CRF.

This operator implements the Forward-Backward algorithm for linear chain CRF.
Please see http://www.cs.columbia.edu/~mcollins/fb.pdf for reference.

Equation:

83 84 85 86 87 88 89 90
- Denote Input(Emission) to this operator as \f$x\f$ here.
- The first D values of Input(Transition) to this operator are for starting
weights, denoted as \f$a\f$ here.
- The next D values of Input(Transition) of this operator are for ending
weights, denoted as \f$b\f$ here.
- The remaning values of Input(Transition) are for transition weights,
denoted as \f$w\f$ here.
- Denote Input(Label) as \f$s\f$ here.
C
caoying03 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as:
\f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L}
                 + \sum_{l=1}^L x_{s_l}
                 + \sum_{l=2}^L w_{s_{l-1},s_l})\f$
where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over
all possible sequences is \f$1\f$, and \f$x\f$ is the emission feature weight
to the linear chain CRF.

Finaly, the linear chain CRF operator outputs the logarithm of the conditional
likelihood of each training sample in a mini-batch.

NOTE:
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

2. Because this operator performs globally normaliztion over all possible
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

113
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
114 115 116 117 118 119 120 121 122

)DOC");
  }
};

class LinearChainCrfOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

    auto emission_dims = ctx->GetInputDim("Emission");
    auto transition_dims = ctx->GetInputDim("Transition");
    auto label_dims = ctx->GetInputDim("Label");

    PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL,
140
                      "The Input(Emission) should be a 2-D tensor.");
C
caoying03 已提交
141
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL,
142
                      "The Input(Transition) should be a 2-D tensor.");
C
caoying03 已提交
143
    PADDLE_ENFORCE_EQ(
144 145
        transition_dims[0] - 2, transition_dims[1],
        "An invalid dimension for the Input(Transition), which should "
C
caoying03 已提交
146 147 148
        "be a 2-D tensor with shape [D + 2 x D].");
    PADDLE_ENFORCE_EQ(
        emission_dims[1], transition_dims[1],
149
        "The 2nd dimension of the Input(Emission) and the Input(Transition) "
C
caoying03 已提交
150 151
        "should be equal to the tag number.");
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
152 153 154 155 156 157
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
    PADDLE_ENFORCE_EQ(
        emission_dims[0], label_dims[0],
        "The height of Input(Emission) and the height of Input(Label) "
        "should be the same.");
C
caoying03 已提交
158 159

    ctx->SetOutputDim("Alpha", emission_dims);
160 161 162 163

    // (TODO caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
    // is the sequence number in a mini-batch. The dimension set here should be
    // resized to its correct size in the function Compute.
C
caoying03 已提交
164 165 166
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
167
 protected:
168 169
  // Explicitly set that the data type of output of the linear_chain_crf
  // operator is determined by its input "Emission".
C
caoying03 已提交
170 171 172 173
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("Emission")->type());
  }
C
caoying03 已提交
174 175
};

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
template <typename T>
class LinearChainCrfOpKernel<platform::CPUPlace, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "This kernel only runs on CPU.");

    auto* emission_weights = ctx.Input<LoDTensor>("Emission");
    auto* transition_weights = ctx.Input<Tensor>("Transition");
    auto* label = ctx.Input<LoDTensor>("Label");

    auto in_lod = emission_weights->lod();
    // TODO(caoying) The checks related to LoD information should be
    // moved into InferShape once after the InferShape is refactored.
    PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL,
                      "The Input(Emission) should be a sequence.");
    PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL,
                      "The Input(Label) should be a sequence.");
    const size_t level = 0;

    auto emission_dims = emission_weights->dims();
    const size_t seq_num = in_lod[level].size() - 1;

    // TODO(caoying) These local variables seems to be created and destroied
    // every time this function is called. Will this bring additional overhead?
    Tensor emission_exps;
    Tensor emission_row_max;
    Tensor transition_exps;
    emission_exps.mutable_data<T>(emission_dims, platform::CPUPlace());
    emission_row_max.mutable_data<T>(
        framework::make_ddim({emission_dims[0], 1}), platform::CPUPlace());
    transition_exps.mutable_data<T>(transition_weights->dims(),
                                    platform::CPUPlace());

C
caoying03 已提交
211
    auto* alpha = ctx.Output<LoDTensor>("Alpha");
212
    alpha->mutable_data<T>(ctx.GetPlace());
C
caoying03 已提交
213
    auto* ll = ctx.Output<LoDTensor>("LogLikelihood");
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    // resize the output tensor to the correct dimension.
    ll->Resize({static_cast<int>(seq_num), 1});
    T* log_likelihood = ll->mutable_data<T>(ctx.GetPlace());

    for (size_t i = 0; i < seq_num; ++i) {
      int start_pos = static_cast<int>(in_lod[level][i]);
      int end_pos = static_cast<int>(in_lod[level][i + 1]);

      const Tensor one_seq = emission_weights->Slice<T>(start_pos, end_pos);
      Tensor one_seq_row_max = emission_row_max.Slice<T>(start_pos, end_pos);
      Tensor one_seq_exps = emission_exps.Slice<T>(start_pos, end_pos);
      const Tensor one_seq_label = label->Slice<T>(start_pos, end_pos);
      Tensor one_seq_alpha = alpha->Slice<T>(start_pos, end_pos);

      log_likelihood[i] = ForwardOneSequence(
          ctx.device_context(), one_seq, one_seq_row_max, one_seq_exps,
          (*transition_weights), transition_exps, one_seq_label, one_seq_alpha);
    }
  }

 protected:
  T ForwardOneSequence(const platform::DeviceContext& ctx,
                       const Tensor& emission, Tensor& emission_row_max,
                       Tensor& emission_exps, const Tensor& trans_weights,
                       Tensor& trans_weight_exps, const Tensor& label,
                       Tensor& alpha) const {
    // (TODO caoying) Evaluate and optimize this.
    // The Eigen compution kernel will be invoked for multiple times.
    // Some computations regardless of sequence inforamtion could be performed
    // only one time for the entire batch. This potentially could be optimized.

    auto x_dims = emission.dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];

    T* alpha_value = alpha.data<T>();

    auto x = EigenMatrix<T>::From(emission);
    auto x_row_max = EigenMatrix<T>::From(emission_row_max);
    const int class_dim = 1;
    x_row_max.device(*ctx.GetEigenDevice<platform::CPUPlace>()) =
        x.maximum(Eigen::DSizes<int, 1>(class_dim))
            .reshape(Eigen::DSizes<int, 2>(int(seq_length), 1));

    auto x_exps = EigenMatrix<T>::From(emission_exps);
    x_exps.device(*ctx.GetEigenDevice<platform::CPUPlace>()) =
        (x - x_row_max.broadcast(Eigen::DSizes<int, 2>(1, tag_num))).exp();

    auto w = EigenMatrix<T>::From(trans_weights);
    auto w_exps = EigenMatrix<T>::From(trans_weight_exps);
    w_exps.device(*ctx.GetEigenDevice<platform::CPUPlace>()) = w.exp();
    // The 1st row of w are transition weights for start mask.
    const size_t start_ridx = 0;
    // The 2nd row of w are transition weights for end mask.
    const size_t end_ridx = 1;
    // Transition weights among other tags begins from the 3rd row of w.
    const size_t state_base_ridx = 2;

    for (size_t i = 0; i < tag_num; ++i) {
      alpha_value[i] = w_exps(start_ridx, i) * x_exps(0, i);
    }
    T ll = -x_row_max(0, 1) - std::log(NormalizeL1(alpha_value, tag_num));

    for (size_t k = 1; k < seq_length; ++k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
          sum += alpha_value[(k - 1) * tag_num + j] *
                 w_exps(j + state_base_ridx, i);
        }
        alpha_value[k * tag_num + i] = x_exps(k, i) * sum;
      }
      ll -= x_row_max(k, 1) +
            std::log(NormalizeL1(alpha_value + k * tag_num, tag_num));
    }
    T sum = 0.;
    for (size_t i = 0; i < tag_num; ++i) {
      sum += alpha_value[(seq_length - 1) * tag_num + i] * w_exps(end_ridx, i);
    }
    ll -= std::log(sum);

    const int* lbl = label.data<int>();
    PADDLE_ENFORCE_LT(
        *std::max_element(lbl, lbl + seq_length), tag_num,
        "An invalid tag label that execesses the largest tag number.");

    // Calculate the nominator part, which depends on the label sequence.
    ll += w(start_ridx, lbl[0]) + x(start_ridx, lbl[0]) +
          w(end_ridx, lbl[seq_length - 1]);
    for (size_t k = 1; k < seq_length; ++k)
      ll += x(k, lbl[k]) + w(lbl[k - 1], lbl[k]);
    return -ll;
  }

 private:
  T NormalizeL1(T* x, size_t len) const {
    T sum = 0.;
    for (size_t i = 0; i < len; ++i) sum += x[i];
    // (This comment is from the old LinearChainCRFLayer.)
    // Right now, we just bet that sum won't be zero. If this really happens, we
    // will figure out what should be done then.
    PADDLE_ENFORCE(sum,
                   "The unnormalized probabilites of all possible unfinished "
                   "sequences must be greater than 0.");
    for (size_t i = 0; i < len; ++i) x[i] /= sum;
    return sum;
  }
};

C
caoying03 已提交
323 324 325 326
class LinearChainCrfGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
327
  void InferShape(framework::InferShapeContext* ctx) const override {}
C
caoying03 已提交
328 329
};

330 331 332 333 334 335 336 337 338 339
template <typename T>
class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "This kernel only runs on CPU.");
  }
};

C
caoying03 已提交
340 341 342 343 344 345
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(linear_chain_crf, ops::LinearChainCrfOp, ops::LinearChainCrfOpMaker,
            linear_chain_crf_grad, ops::LinearChainCrfGradOp);
346 347 348 349 350 351
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
    ops::LinearChainCrfOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
    ops::LinearChainCrfGradOpKernel<paddle::platform::CPUPlace, float>);