bert_encoder_functor.cu 32.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

P
Pei Yang 已提交
15
#include <algorithm>
16

17 18 19 20 21
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/bert_encoder_functor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/enforce.h"
22
#include "paddle/pten/kernels/funcs/math_cuda_utils.h"
23 24 25 26 27

namespace paddle {
namespace operators {
namespace math {

28 29 30 31
// NOTE(chenfeiyu): explicitly use operator+ for float2
// since float2 is not in namespace pten::funcs, ADL won't help
using pten::funcs::operator+;

W
wenbin 已提交
32 33 34 35 36 37 38 39
template <typename T>
__device__ __forceinline__ T local_rsqrt(T num) {
  return rsqrt(static_cast<float>(num));
}
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
__device__ __forceinline__ half local_rsqrt(half num) { return hrsqrt(num); }
#endif

40
template <typename T, int TPB>
41 42
__device__ inline void LayerNormSmall(T val,
                                      const pten::funcs::kvp<T> &thread_data,
43 44 45
                                      const int ld, const int idx,
                                      const float *bias, const float *scale,
                                      T *output, T eps) {
46
  using BlockReduce = cub::BlockReduce<pten::funcs::kvp<T>, TPB>;
47 48 49 50 51 52 53 54
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ T mu;      // mean
  __shared__ T rsigma;  // 1 / std.dev.

  const auto sum_kv = BlockReduce(temp_storage).Reduce(thread_data, cub::Sum());

  if (threadIdx.x == 0) {
    mu = sum_kv.key;
W
wenbin 已提交
55
    rsigma = local_rsqrt(sum_kv.value - mu * mu + eps);
56 57 58 59 60 61 62 63 64 65 66
  }
  __syncthreads();

  if (threadIdx.x < ld) {
    const T g(scale[threadIdx.x]);
    const T b(bias[threadIdx.x]);
    output[idx] = g * (val - mu) * rsigma + b;
  }
}

template <typename T, int TPB>
67 68 69 70 71
__device__ inline void LayerNorm(const pten::funcs::kvp<T> &thread_data,
                                 const int ld, const int offset,
                                 const float *bias, const float *scale,
                                 T *output, T eps) {
  using BlockReduce = cub::BlockReduce<pten::funcs::kvp<T>, TPB>;
72 73 74 75 76 77 78 79
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ T mu;      // mean
  __shared__ T rsigma;  // 1 / std.dev.

  const auto sum_kv = BlockReduce(temp_storage).Reduce(thread_data, cub::Sum());

  if (threadIdx.x == 0) {
    mu = sum_kv.key;
W
wenbin 已提交
80
    rsigma = local_rsqrt(sum_kv.value - mu * mu + eps);
81 82 83 84 85 86 87 88 89 90 91 92
  }
  __syncthreads();

  for (int i = threadIdx.x; i < ld; i += TPB) {
    const int idx = offset + i;
    const T val = output[idx];
    const T g(scale[i]);
    const T b(bias[i]);
    output[idx] = g * (val - mu) * rsigma + b;
  }
}

93
template <typename T, typename T2, int TPB>
94 95 96 97 98
__device__ inline void LayerNorm2(const pten::funcs::kvp<T> &thread_data,
                                  const int ld, const int offset,
                                  const float2 *bias, const float2 *scale,
                                  T2 *output, T eps) {
  using BlockReduce = cub::BlockReduce<pten::funcs::kvp<T>, TPB>;
99 100 101 102 103 104 105 106
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ T mu;      // mean
  __shared__ T rsigma;  // 1 / std.dev.

  const auto sum_kv = BlockReduce(temp_storage).Reduce(thread_data, cub::Sum());

  if (threadIdx.x == 0) {
    mu = sum_kv.key;
W
wenbin 已提交
107
    rsigma = local_rsqrt(sum_kv.value - mu * mu + eps);
108 109 110 111 112 113 114 115 116 117 118 119 120 121
  }
  __syncthreads();

  for (int i = threadIdx.x; i < ld; i += TPB) {
    const int idx = offset + i;
    T2 val = output[idx];
    const float2 g = scale[i];
    const float2 b = bias[i];
    val.x = T(g.x) * (val.x - mu) * rsigma + T(b.x);
    val.y = T(g.y) * (val.y - mu) * rsigma + T(b.y);
    output[idx] = val;
  }
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
template <typename T, unsigned TPB>
__global__ void EmbEltwiseLayernormKernel(int hidden, const int64_t *ids,
                                          const float *scale, const float *bias,
                                          const int64_t *embs, T *output,
                                          float eps, int input_num) {
  cub::Sum pair_sum;
  // blockIdx.x: position in the sequence
  // blockIdx.y: batch
  // gridDim.x: Seq
  // gridDim.y: Batch

  extern __shared__ int64_t array_id[];

  const T rhidden = T(1.f) / T(hidden);
  const int64_t seq_pos = blockIdx.y + blockIdx.x * gridDim.y;
  if (threadIdx.x == 0) {
    for (int i = 0; i < input_num; ++i) {
      const int64_t *ids_p = reinterpret_cast<const int64_t *>(ids[i]);
      array_id[i] = ids_p[seq_pos];
    }
  }
  __syncthreads();

  const int64_t out_offset = seq_pos * hidden;

147
  pten::funcs::kvp<T> thread_data(0, 0);
148 149 150 151 152 153 154 155 156 157

#pragma unroll
  for (int it = threadIdx.x; it < hidden; it += TPB) {
    T val = 0;
    for (int i = 0; i < input_num; ++i) {
      val += reinterpret_cast<const T *>(embs[i])[array_id[i] * hidden + it];
    }

    output[out_offset + it] = val;
    const T rhiddenval = rhidden * val;
158 159
    thread_data = pair_sum(thread_data,
                           pten::funcs::kvp<T>(rhiddenval, rhiddenval * val));
160 161 162 163
  }
  LayerNorm<T, TPB>(thread_data, hidden, out_offset, bias, scale, output, eps);
}

164 165
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#ifndef __HIPCC__  // @{ Half kernel: EmbEltwiseLayernormKernel
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
template <>
__global__ void EmbEltwiseLayernormKernel<half, 256>(
    int hidden, const int64_t *ids, const float *scale, const float *bias,
    const int64_t *embs, half *output, float eps, int input_num) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  cub::Sum pair_sum;
  // blockIdx.x: position in the sequence
  // blockIdx.y: batch
  // gridDim.x: Seq
  // gridDim.y: Batch

  extern __shared__ int64_t array_id[];

  const half rhidden = half(1.f) / half(hidden);
  const int64_t seq_pos = blockIdx.y + blockIdx.x * gridDim.y;
  if (threadIdx.x == 0) {
    for (int i = 0; i < input_num; ++i) {
      const int64_t *ids_p = reinterpret_cast<const int64_t *>(ids[i]);
      array_id[i] = ids_p[seq_pos];
    }
  }
  __syncthreads();

  const int64_t out_offset = seq_pos * hidden;

191
  pten::funcs::kvp<half> thread_data(0, 0);
192 193 194 195 196 197 198 199 200 201

#pragma unroll
  for (int it = threadIdx.x; it < hidden; it += 256) {
    half val = 0;
    for (int i = 0; i < input_num; ++i) {
      val += reinterpret_cast<const half *>(embs[i])[array_id[i] * hidden + it];
    }

    output[out_offset + it] = val;
    const half rhiddenval = rhidden * val;
202 203
    thread_data = pair_sum(
        thread_data, pten::funcs::kvp<half>(rhiddenval, rhiddenval * val));
204 205 206 207 208
  }
  LayerNorm<half, 256>(thread_data, hidden, out_offset, bias, scale, output,
                       eps);
#endif
}
209
#endif  // @} End Half kernel: EmbEltwiseLayernormKernel
210

211 212 213 214
template <typename T>
void EmbEltwiseLayerNormFunctor<T>::operator()(
    int batch, int seq_len, int hidden, const int64_t *ids, const float *scale,
    const float *bias, const int64_t *embs, T *output, float eps, int input_num,
215
    gpuStream_t stream) {
216 217 218 219 220 221 222 223 224 225
  const unsigned tpb = 256;
  const dim3 grid(seq_len, batch, 1);
  const dim3 block(tpb, 1, 1);
  int shared_bytes = input_num * sizeof(int64_t);
  EmbEltwiseLayernormKernel<T, tpb><<<grid, block, shared_bytes, stream>>>(
      hidden, ids, scale, bias, embs, output, eps, input_num);
}

template class EmbEltwiseLayerNormFunctor<float>;

226
// device function 'operator()' is not supportted until cuda 10.0
227 228
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 10000
229 230 231 232 233 234 235 236 237 238 239
template class EmbEltwiseLayerNormFunctor<half>;
#endif

template <typename T>
__global__ void SoftmaxKernelWithEltadd(T *qk_buf_, const T *bias_qk_,
                                        const int batch_size,
                                        const int head_num, const int seq_len,
                                        const unsigned mask) {
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

240 241 242 243
  float tmp = threadIdx.x < seq_len
                  ? static_cast<float>(qk_buf_[threadIdx.x + qk_offset] +
                                       bias_qk_[threadIdx.x + qk_offset])
                  : -1e20f;
244
  float max_val = pten::funcs::blockReduceMax<float>(tmp, mask);
245

246
  float qk_tmp = threadIdx.x < seq_len ? __expf(tmp - max_val) : 0.0f;
247
  float sum_val = pten::funcs::blockReduceSum<float>(qk_tmp, mask);
248 249

  if (threadIdx.x < seq_len)
250 251 252
    qk_buf_[threadIdx.x + qk_offset] = (T)(qk_tmp / sum_val);
}

253 254
// HIP defined __HIP_NO_HALF_CONVERSIONS__
#ifndef __HIPCC__  // @{ Half kernel: SoftmaxKernelWithEltadd
255 256 257 258 259 260 261 262 263 264 265 266
template <>
__global__ void SoftmaxKernelWithEltadd<half>(
    half *qk_buf_, const half *bias_qk_, const int batch_size,
    const int head_num, const int seq_len, const unsigned mask) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

  float tmp = threadIdx.x < seq_len
                  ? static_cast<float>(qk_buf_[threadIdx.x + qk_offset] +
                                       bias_qk_[threadIdx.x + qk_offset])
                  : -1e20f;
267
  float max_val = pten::funcs::blockReduceMax<float>(tmp, mask);
268 269

  float qk_tmp = threadIdx.x < seq_len ? __expf(tmp - max_val) : 0.0f;
270
  float sum_val = pten::funcs::blockReduceSum<float>(qk_tmp, mask);
271 272 273 274 275

  if (threadIdx.x < seq_len)
    qk_buf_[threadIdx.x + qk_offset] = (half)(qk_tmp / sum_val);
#endif
}
276
#endif  // @} End Half kernel: SoftmaxKernelWithEltadd
277

278 279 280 281 282 283 284 285 286
template <typename T>
__global__ void SoftmaxKernelWithEltadd2(T *qk_buf_, const T *bias_qk_,
                                         const int batch_size,
                                         const int head_num, const int seq_len,
                                         const unsigned mask) {
  int qk_offset = blockIdx.x * seq_len;
  int idx = threadIdx.x;
  assert(blockDim.x % 32 == 0);

287 288 289 290 291
  float2 tmp = idx < seq_len
                   ? pten::funcs::ToFloat2<T>(qk_buf_[idx + qk_offset] +
                                              bias_qk_[idx + qk_offset])
                   : make_float2(-1e20f, -1e20f);
  float max_val = pten::funcs::blockReduceMax<float>(max(tmp.x, tmp.y), mask);
292 293 294
  float2 qk_tmp = idx < seq_len ? make_float2(__expf(tmp.x - max_val),
                                              __expf(tmp.y - max_val))
                                : make_float2(0.f, 0.f);
295 296
  float sum_val =
      pten::funcs::blockReduceSum<float>(qk_tmp.x + qk_tmp.y, mask) + 1e-6f;
297 298 299

  if (idx < seq_len) {
    qk_buf_[idx + qk_offset] =
300
        pten::funcs::FloatsToPair<T>(qk_tmp.x / sum_val, qk_tmp.y / sum_val);
301
  }
302 303
}

304 305 306 307 308
template <>
__global__ void SoftmaxKernelWithEltadd2<half2>(
    half2 *qk_buf_, const half2 *bias_qk_, const int batch_size,
    const int head_num, const int seq_len, const unsigned mask) {
// operator "+" of half only suppotted after cuda version 10.0
309
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
310
#if defined(PADDLE_WITH_CUDA) && \
311
    (CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__) && CUDA_VERSION >= 10000)
312 313 314 315
  int qk_offset = blockIdx.x * seq_len;
  int idx = threadIdx.x;
  assert(blockDim.x % 32 == 0);

316 317 318 319 320
  float2 tmp = idx < seq_len
                   ? pten::funcs::ToFloat2<half2>(qk_buf_[idx + qk_offset] +
                                                  bias_qk_[idx + qk_offset])
                   : make_float2(-1e20f, -1e20f);
  float max_val = pten::funcs::blockReduceMax<float>(max(tmp.x, tmp.y), mask);
321 322 323
  float2 qk_tmp = idx < seq_len ? make_float2(__expf(tmp.x - max_val),
                                              __expf(tmp.y - max_val))
                                : make_float2(0.f, 0.f);
324 325
  float sum_val =
      pten::funcs::blockReduceSum<float>(qk_tmp.x + qk_tmp.y, mask) + 1e-6f;
326 327

  if (idx < seq_len) {
328 329
    qk_buf_[idx + qk_offset] = pten::funcs::FloatsToPair<half2>(
        qk_tmp.x / sum_val, qk_tmp.y / sum_val);
330 331 332 333
  }
#endif
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
template <typename T>
__global__ void SoftmaxKernelWithEltaddForLarge(T *qk_buf, const T *bias_qk,
                                                const int batch_size,
                                                const int head_num,
                                                const int seq_len,
                                                const unsigned mask) {
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

  T stride_max = -1e20f;
  for (int i = 0; i < seq_len; i += blockDim.x) {
    stride_max = qk_buf[threadIdx.x + i + qk_offset] +
                             bias_qk[threadIdx.x + i + qk_offset] >
                         stride_max
                     ? qk_buf[threadIdx.x + i + qk_offset] +
                           bias_qk[threadIdx.x + i + qk_offset]
                     : stride_max;
  }
352
  T max_val = pten::funcs::blockReduceMax<T>(stride_max, mask);
353 354 355 356 357 358

  T stride_sum = 0.f;
  for (int i = 0; i < seq_len; i += blockDim.x) {
    stride_sum += __expf(qk_buf[threadIdx.x + i + qk_offset] +
                         bias_qk[threadIdx.x + i + qk_offset] - max_val);
  }
359
  T sum_val = pten::funcs::blockReduceSum<T>(stride_sum, mask);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

  for (int i = 0; i < seq_len; i += blockDim.x) {
    qk_buf[threadIdx.x + i + qk_offset] =
        (T)(__expf(qk_buf[threadIdx.x + i + qk_offset] +
                   bias_qk[threadIdx.x + i + qk_offset] - max_val) /
            sum_val);
  }
}

// HIP defined __HIP_NO_HALF_CONVERSIONS__
#ifndef __HIPCC__  // @{ Half kernel: SoftmaxKernelWithEltadd
template <>
__global__ void SoftmaxKernelWithEltaddForLarge(
    half *qk_buf, const half *bias_qk, const int batch_size, const int head_num,
    const int seq_len, const unsigned mask) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

  float stride_max = -1e20f;
  for (int i = 0; i < seq_len; i += blockDim.x) {
    float tmp = static_cast<float>(qk_buf[threadIdx.x + i + qk_offset] +
                                   bias_qk[threadIdx.x + i + qk_offset]);
    stride_max = tmp > stride_max ? tmp : stride_max;
  }
385
  float max_val = pten::funcs::blockReduceMax<float>(stride_max, mask);
386 387 388 389 390 391 392

  float stride_sum = 0.f;
  for (int i = 0; i < seq_len; i += blockDim.x) {
    float tmp = static_cast<float>(qk_buf[threadIdx.x + i + qk_offset] +
                                   bias_qk[threadIdx.x + i + qk_offset]);
    stride_sum += __expf(tmp - max_val);
  }
393
  float sum_val = pten::funcs::blockReduceSum<float>(stride_sum, mask);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

  for (int i = 0; i < seq_len; i += blockDim.x) {
    float tmp =
        __expf(static_cast<float>(qk_buf[threadIdx.x + i + qk_offset] +
                                  bias_qk[threadIdx.x + i + qk_offset]) -
               max_val);
    qk_buf[threadIdx.x + i + qk_offset] = (half)(tmp / sum_val);
  }
#endif
}
#endif  // @} End Half kernel: SoftmaxKernelWithEltadd

template <typename T>
__global__ void SoftmaxKernelWithEltaddForLarge2(T *qk_buf_, const T *bias_qk_,
                                                 const int batch_size,
                                                 const int head_num,
                                                 const int seq_len,
                                                 const unsigned mask) {
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

  float2 stride_max = make_float2(-1e20f, -1e20f);
  for (int i = 0; i < seq_len; i += blockDim.x) {
417 418 419
    float2 cur =
        pten::funcs::ToFloat2<T>(qk_buf_[threadIdx.x + i + qk_offset] +
                                 bias_qk_[threadIdx.x + i + qk_offset]);
420 421 422
    stride_max.x = max(stride_max.x, cur.x);
    stride_max.y = max(stride_max.y, cur.y);
  }
423 424
  float max_val =
      pten::funcs::blockReduceMax<float>(max(stride_max.x, stride_max.y), mask);
425 426 427

  float2 stride_sum = make_float2(0.f, 0.f);
  for (int i = 0; i < seq_len; i += blockDim.x) {
428 429 430
    float2 cur =
        pten::funcs::ToFloat2<T>(qk_buf_[threadIdx.x + i + qk_offset] +
                                 bias_qk_[threadIdx.x + i + qk_offset]);
431 432 433 434 435
    stride_sum.x += __expf(cur.x - max_val);
    stride_sum.y += __expf(cur.y - max_val);
  }

  float sum_val =
436 437
      pten::funcs::blockReduceSum<float>(stride_sum.x + stride_sum.y, mask) +
      1e-6f;
438 439

  for (int i = 0; i < seq_len; i += blockDim.x) {
440 441 442 443
    float2 cur =
        pten::funcs::ToFloat2<T>(qk_buf_[threadIdx.x + i + qk_offset] +
                                 bias_qk_[threadIdx.x + i + qk_offset]);
    qk_buf_[threadIdx.x + i + qk_offset] = pten::funcs::FloatsToPair<T>(
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        __expf(cur.x - max_val) / sum_val, __expf(cur.y - max_val) / sum_val);
  }
}

template <>
__global__ void SoftmaxKernelWithEltaddForLarge2(
    half2 *qk_buf_, const half2 *bias_qk_, const int batch_size,
    const int head_num, const int seq_len, const unsigned mask) {
// operator "+" of half only suppotted after cuda version 10.0
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#if defined(PADDLE_WITH_CUDA) && \
    (CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__) && CUDA_VERSION >= 10000)

  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

  float2 stride_max = make_float2(-1e20f, -1e20f);
  for (int i = 0; i < seq_len; i += blockDim.x) {
462 463 464
    float2 cur =
        pten::funcs::ToFloat2<half2>(qk_buf_[threadIdx.x + i + qk_offset] +
                                     bias_qk_[threadIdx.x + i + qk_offset]);
465 466 467
    stride_max.x = max(stride_max.x, cur.x);
    stride_max.y = max(stride_max.y, cur.y);
  }
468 469
  float max_val =
      pten::funcs::blockReduceMax<float>(max(stride_max.x, stride_max.y), mask);
470 471 472

  float2 stride_sum = make_float2(0.f, 0.f);
  for (int i = 0; i < seq_len; i += blockDim.x) {
473 474 475
    float2 cur =
        pten::funcs::ToFloat2<half2>(qk_buf_[threadIdx.x + i + qk_offset] +
                                     bias_qk_[threadIdx.x + i + qk_offset]);
476 477 478 479 480
    stride_sum.x += __expf(cur.x - max_val);
    stride_sum.y += __expf(cur.y - max_val);
  }

  float sum_val =
481 482
      pten::funcs::blockReduceSum<float>(stride_sum.x + stride_sum.y, mask) +
      1e-6f;
483 484

  for (int i = 0; i < seq_len; i += blockDim.x) {
485 486 487 488
    float2 cur =
        pten::funcs::ToFloat2<half2>(qk_buf_[threadIdx.x + i + qk_offset] +
                                     bias_qk_[threadIdx.x + i + qk_offset]);
    qk_buf_[threadIdx.x + i + qk_offset] = pten::funcs::FloatsToPair<half2>(
489 490 491 492 493
        __expf(cur.x - max_val) / sum_val, __expf(cur.y - max_val) / sum_val);
  }
#endif
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
template <typename T>
inline void MatMulWithHeadQK(const platform::CUDADeviceContext &context,
                             int head_num, int seq_len, int size_per_head,
                             int batch_size, bool q_trans, bool k_trans,
                             T *q_buf_, T *k_buf_, T *qk_buf_, const T *bias_qk,
                             T alpha, T beta) {
  CBLAS_TRANSPOSE transA = !q_trans ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !k_trans ? CblasNoTrans : CblasTrans;

  typedef typename CUDATypeTraits<T>::TYPE run_type;
  auto blas =
      operators::math::GetBlas<platform::CUDADeviceContext, run_type>(context);
  auto stream = context.stream();

  blas.BatchedGEMM(
      transA, transB, seq_len, seq_len, size_per_head,
      static_cast<run_type>(alpha), reinterpret_cast<run_type *>(q_buf_),
      reinterpret_cast<run_type *>(k_buf_), static_cast<run_type>(beta),
      reinterpret_cast<run_type *>(qk_buf_), batch_size * head_num,
      seq_len * size_per_head, seq_len * size_per_head);

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
  if (seq_len <= 1024) {
    int grid = batch_size * head_num * seq_len;
    int block = seq_len;

    // Align block to 32, also limit seq_len to max block size.
    if (seq_len % 2 == 0) {
      block = (seq_len <= 64) ? 32 : ((seq_len + 63) / 64) * 32;
      if (std::is_same<T, float>::value) {
        SoftmaxKernelWithEltadd2<float2><<<grid, block, 0, stream>>>(
            reinterpret_cast<float2 *>(qk_buf_),
            reinterpret_cast<const float2 *>(bias_qk), batch_size, head_num,
            seq_len / 2, FINAL_MASK);
      } else {
        SoftmaxKernelWithEltadd2<__half2><<<grid, block, 0, stream>>>(
            reinterpret_cast<__half2 *>(qk_buf_),
            reinterpret_cast<const __half2 *>(bias_qk), batch_size, head_num,
            seq_len / 2, FINAL_MASK);
      }
533
    } else {
534 535 536
      block = (seq_len <= 32) ? 32 : ((seq_len + 31) / 32) * 32;
      SoftmaxKernelWithEltadd<T><<<grid, block, 0, stream>>>(
          qk_buf_, bias_qk, batch_size, head_num, seq_len, FINAL_MASK);
537 538
    }
  } else {
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    int grid = batch_size * head_num * seq_len;
    int block = 512;
    if (seq_len % 2 == 0) {
      if (std::is_same<T, float>::value) {
        SoftmaxKernelWithEltaddForLarge2<float2><<<grid, block, 0, stream>>>(
            reinterpret_cast<float2 *>(qk_buf_),
            reinterpret_cast<const float2 *>(bias_qk), batch_size, head_num,
            seq_len / 2, FINAL_MASK);
      } else {
        SoftmaxKernelWithEltaddForLarge2<__half2><<<grid, block, 0, stream>>>(
            reinterpret_cast<__half2 *>(qk_buf_),
            reinterpret_cast<const __half2 *>(bias_qk), batch_size, head_num,
            seq_len / 2, FINAL_MASK);
      }
    } else {
      SoftmaxKernelWithEltaddForLarge<T><<<grid, block, 0, stream>>>(
          qk_buf_, bias_qk, batch_size, head_num, seq_len, FINAL_MASK);
    }
557
  }
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
}

template <typename T>
inline void MatMulWithHeadQKV(const platform::CUDADeviceContext &context,
                              int head_num, int seq_len, int size_per_head,
                              int batch_size, bool qk_trans, bool v_trans,
                              T *v_buf_, const T *qk_buf_, T *dst, T alpha,
                              T beta) {
  int m = batch_size * seq_len;
  int k = head_num * size_per_head;

  typedef typename CUDATypeTraits<T>::TYPE run_type;
  auto blas =
      operators::math::GetBlas<platform::CUDADeviceContext, run_type>(context);
  auto stream = context.stream();
  CBLAS_TRANSPOSE transA = !qk_trans ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !v_trans ? CblasNoTrans : CblasTrans;

  blas.BatchedGEMM(
      transA, transB, seq_len, size_per_head, seq_len,
      static_cast<run_type>(alpha), reinterpret_cast<const run_type *>(qk_buf_),
      reinterpret_cast<run_type *>(v_buf_), static_cast<run_type>(beta),
      reinterpret_cast<run_type *>(dst), batch_size * head_num,
      seq_len * seq_len, seq_len * size_per_head);
}

template <typename T>
void MultiHeadGPUComputeFunctor<T>::operator()(
    const platform::CUDADeviceContext &dev_ctx, int batch, int seq_len,
    int head_num, int head_size, T *qkptr, const T *bias_qk_ptr, T *tptr,
    T alpha, T beta) {
  auto stream = dev_ctx.stream();
  const int tsize = batch * head_num * seq_len * head_size;

  T *qptr = tptr;
  T *kptr = qptr + tsize;
  T *vptr = kptr + tsize;
  // batch gemm stride, softmaxwithscale.
  MatMulWithHeadQK<T>(dev_ctx, head_num, seq_len, head_size, batch, false, true,
                      qptr, kptr, qkptr, bias_qk_ptr, alpha, beta);
  // batch gemm stride, transpose.
  MatMulWithHeadQKV<T>(dev_ctx, head_num, seq_len, head_size, batch, false,
                       false, vptr, qkptr, tptr, T(1.0), beta);
}

template class MultiHeadGPUComputeFunctor<float>;

605
// device function 'operator()' is not supportted until cuda 10.0
606
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
607
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 10000
608 609 610 611 612 613 614 615 616 617 618
template class MultiHeadGPUComputeFunctor<half>;
#endif

template <typename T, unsigned TPB>
__global__ void SkipLayerNormSmallKernel(int num, int hidden, const T *input1,
                                         const T *input2, T *output,
                                         const float *scale, const float *bias,
                                         float eps) {
  const T rld = T(1) / T(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
619
  pten::funcs::kvp<T> thread_data(0, 0);
620 621 622 623 624
  const int idx = offset + threadIdx.x;
  T val = 0;
  if (threadIdx.x < hidden) {
    val = input1[idx] + input2[idx];
    const T rldval = rld * val;
625 626
    thread_data =
        pair_sum(thread_data, pten::funcs::kvp<T>(rldval, rldval * val));
627 628 629 630 631
  }
  LayerNormSmall<T, TPB>(val, thread_data, hidden, idx, bias, scale, output,
                         eps);
}

632 633
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#ifndef __HIPCC__  // @{ Half kernel: SkipLayerNormSmallKernel
634 635 636 637 638 639 640 641
template <>
__global__ void SkipLayerNormSmallKernel<half, 32>(
    int num, int hidden, const half *input1, const half *input2, half *output,
    const float *scale, const float *bias, float eps) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  const half rld = half(1) / half(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
642
  pten::funcs::kvp<half> thread_data(0, 0);
643 644 645 646 647
  const int idx = offset + threadIdx.x;
  half val = 0;
  if (threadIdx.x < hidden) {
    val = input1[idx] + input2[idx];
    const half rldval = rld * val;
648 649
    thread_data =
        pair_sum(thread_data, pten::funcs::kvp<half>(rldval, rldval * val));
650 651 652 653 654 655 656 657 658 659 660 661 662 663
  }
  LayerNormSmall<half, 32>(val, thread_data, hidden, idx, bias, scale, output,
                           eps);
#endif
}

template <>
__global__ void SkipLayerNormSmallKernel<half, 128>(
    int num, int hidden, const half *input1, const half *input2, half *output,
    const float *scale, const float *bias, float eps) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  const half rld = half(1) / half(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
664
  pten::funcs::kvp<half> thread_data(0, 0);
665 666 667 668 669
  const int idx = offset + threadIdx.x;
  half val = 0;
  if (threadIdx.x < hidden) {
    val = input1[idx] + input2[idx];
    const half rldval = rld * val;
670 671
    thread_data =
        pair_sum(thread_data, pten::funcs::kvp<half>(rldval, rldval * val));
672 673 674 675 676 677 678 679 680 681 682 683 684 685
  }
  LayerNormSmall<half, 128>(val, thread_data, hidden, idx, bias, scale, output,
                            eps);
#endif
}

template <>
__global__ void SkipLayerNormSmallKernel<half, 384>(
    int num, int hidden, const half *input1, const half *input2, half *output,
    const float *scale, const float *bias, float eps) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  const half rld = half(1) / half(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
686
  pten::funcs::kvp<half> thread_data(0, 0);
687 688 689 690 691
  const int idx = offset + threadIdx.x;
  half val = 0;
  if (threadIdx.x < hidden) {
    val = input1[idx] + input2[idx];
    const half rldval = rld * val;
692 693
    thread_data =
        pair_sum(thread_data, pten::funcs::kvp<half>(rldval, rldval * val));
694 695 696 697 698
  }
  LayerNormSmall<half, 384>(val, thread_data, hidden, idx, bias, scale, output,
                            eps);
#endif
}
699
#endif  // @} End Half kernel: SkipLayerNormSmallKernel
700

701 702 703 704 705 706 707 708
template <typename T, unsigned TPB>
__global__ void SkipLayerNormKernel(int num, int hidden, const T *input1,
                                    const T *input2, T *output,
                                    const float *scale, const float *bias,
                                    float eps) {
  const T rld = T(1) / T(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
709
  pten::funcs::kvp<T> thread_data(0, 0);
710 711 712 713 714

  for (int it = threadIdx.x; it < hidden; it += TPB) {
    const int idx = offset + it;
    const T val = input1[idx] + input2[idx];
    const T rldval = rld * val;
715 716
    thread_data =
        pair_sum(thread_data, pten::funcs::kvp<T>(rldval, rldval * val));
717 718 719 720 721
    output[idx] = val;
  }
  LayerNorm<T, TPB>(thread_data, hidden, offset, bias, scale, output, eps);
}

722 723
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#ifndef __HIPCC__  // @{ Half kernel: SkipLayerNormKernel
724 725 726 727 728 729 730 731 732 733
template <>
__global__ void SkipLayerNormKernel<half, 256>(int num, int hidden,
                                               const half *input1,
                                               const half *input2, half *output,
                                               const float *scale,
                                               const float *bias, float eps) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  const half rld = half(1) / half(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
734
  pten::funcs::kvp<half> thread_data(0, 0);
735 736 737 738 739

  for (int it = threadIdx.x; it < hidden; it += 256) {
    const int idx = offset + it;
    const half val = input1[idx] + input2[idx];
    const half rldval = rld * val;
740 741
    thread_data =
        pair_sum(thread_data, pten::funcs::kvp<half>(rldval, rldval * val));
742 743 744 745 746
    output[idx] = val;
  }
  LayerNorm<half, 256>(thread_data, hidden, offset, bias, scale, output, eps);
#endif
}
747
#endif  // @} End Half kernel: SkipLayerNormKernel
748

749 750 751 752 753 754 755 756
template <typename T, typename T2, unsigned TPB>
__global__ void SkipLayerNormKernel2(int num, int hidden, const T2 *input1,
                                     const T2 *input2, T2 *output,
                                     const float2 *scale, const float2 *bias,
                                     float eps) {
  const T rld = T(0.5f / hidden);  // because hidden is hidden/2
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
757
  pten::funcs::kvp<T> thread_data(0, 0);
758 759 760 761 762

  for (int it = threadIdx.x; it < hidden; it += TPB) {
    const int idx = offset + it;
    const T2 val2 = input1[idx] + input2[idx];
    thread_data = pair_sum(
763 764
        thread_data,
        pten::funcs::kvp<T>(rld * (val2.x + val2.y),
765 766 767 768 769 770
                            rld * val2.x * val2.x + rld * val2.y * val2.y));
    output[idx] = val2;
  }
  LayerNorm2<T, T2, TPB>(thread_data, hidden, offset, bias, scale, output, eps);
}

771 772
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#ifndef __HIPCC__  // @{ Half kernel: SkipLayerNormKernel2
773 774 775 776 777 778 779 780 781
template <>
__global__ void SkipLayerNormKernel2<half, half2, 256>(
    int num, int hidden, const half2 *input1, const half2 *input2,
    half2 *output, const float2 *scale, const float2 *bias, float eps) {
// operator "+" of half only suppotted after cuda version 10.0
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__) && CUDA_VERSION >= 10000
  const half rld = half(0.5f / hidden);  // because hidden is hidden/2
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
782
  pten::funcs::kvp<half> thread_data(0, 0);
783 784 785 786 787

  for (int it = threadIdx.x; it < hidden; it += 256) {
    const int idx = offset + it;
    const half2 val2 = input1[idx] + input2[idx];
    thread_data = pair_sum(
788 789
        thread_data,
        pten::funcs::kvp<half>(rld * (val2.x + val2.y),
790 791 792 793 794 795 796
                               rld * val2.x * val2.x + rld * val2.y * val2.y));
    output[idx] = val2;
  }
  LayerNorm2<half, half2, 256>(thread_data, hidden, offset, bias, scale, output,
                               eps);
#endif
}
797
#endif  // @} End Half kernel: SkipLayerNormKernel2
798

799 800 801 802
template <typename T>
void SkipLayerNormFunctor<T>::operator()(const int num, const int hidden,
                                         const T *input1, const T *input2,
                                         const float *scale, const float *bias,
803
                                         T *output, T eps, gpuStream_t stream) {
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
  int block = num / hidden;
  if (hidden <= 32) {
    const int threads = 32;
    SkipLayerNormSmallKernel<T, threads><<<block, threads, 0, stream>>>(
        num, hidden, input1, input2, output, scale, bias, eps);
  } else if (hidden <= 128) {
    const int threads = 128;
    SkipLayerNormSmallKernel<T, threads><<<block, threads, 0, stream>>>(
        num, hidden, input1, input2, output, scale, bias, eps);
  } else if (hidden == 384) {
    const int threads = 384;
    SkipLayerNormSmallKernel<T, threads><<<block, threads, 0, stream>>>(
        num, hidden, input1, input2, output, scale, bias, eps);
  } else {
    const int threads = 256;
819 820 821 822 823 824 825 826 827
    if (hidden % 2 == 0) {
      if (std::is_same<T, float>::value) {
        SkipLayerNormKernel2<float, float2,
                             threads><<<block, threads, 0, stream>>>(
            num, hidden / 2, reinterpret_cast<const float2 *>(input1),
            reinterpret_cast<const float2 *>(input2),
            reinterpret_cast<float2 *>(output),
            reinterpret_cast<const float2 *>(scale),
            reinterpret_cast<const float2 *>(bias), eps);
828 829
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
#ifndef __HIPCC__
830 831 832 833 834 835 836 837
      } else if (std::is_same<T, __half>::value) {
        SkipLayerNormKernel2<__half, __half2,
                             threads><<<block, threads, 0, stream>>>(
            num, hidden / 2, reinterpret_cast<const __half2 *>(input1),
            reinterpret_cast<const __half2 *>(input2),
            reinterpret_cast<__half2 *>(output),
            reinterpret_cast<const float2 *>(scale),
            reinterpret_cast<const float2 *>(bias), eps);
838
#endif
839 840 841 842 843 844 845 846
      } else {
        assert(false);
        // should not be here
      }
    } else {
      SkipLayerNormKernel<T, threads><<<block, threads, 0, stream>>>(
          num, hidden, input1, input2, output, scale, bias, eps);
    }
847 848 849 850 851
  }
}

template class SkipLayerNormFunctor<float>;

852
// device function 'operator()' is not supportted until cuda 10.0
853
// HIP defined __HIP_NO_HALF_CONVERSIONS__ in hip.cmake
854
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 10000
855 856 857 858 859 860
template class SkipLayerNormFunctor<half>;
#endif

}  // namespace math
}  // namespace operators
}  // namespace paddle