grad_scaler.py 48.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import warnings
16
from collections import defaultdict
17
from enum import Enum
18

19
import numpy as np
20

21
from paddle import _C_ops, _legacy_C_ops
22 23 24 25 26 27 28 29 30 31
from paddle.fluid import core, in_dygraph_mode
from paddle.fluid.data_feeder import check_type
from paddle.fluid.dygraph import to_variable
from paddle.fluid.framework import _dygraph_tracer, dygraph_only


class OptimizerState(Enum):
    INIT = 0
    UNSCALED = 1
    STEPPED = 2
32 33


34 35 36 37
def _refresh_optimizer_state():
    return {"state": OptimizerState.INIT}


38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
class AmpScaler:
    """
    AmpScaler is used for Auto-Mixed-Precision training/inferring in imperative
    mode. It controls the scaling of loss, helps avoiding numerical overflow.
    The object of this class has seventeen methods `scale()`, `unscale_()`, `minimize()` and `get`/`set` api of parameters.

    `scale()` is used to multiply the loss by a scale ratio.
    `unscale_()` is used to unscale the gradients of parameters, multiplies the gradients of parameters by 1/(scale ratio)
    `minimize()` is similar as `optimizer.minimize()`, performs parameters updating, and it will update the loss_scaling.

    Commonly, it is used together with `amp_guard` to achieve Auto-Mixed-Precision in
    imperative mode.

    Args:
        enable(bool, optional): Enable loss scaling or not. Default is True.
        init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15.
        incr_ratio(float, optional): The multiplier to use when increasing the loss
                        scaling. Default is 2.0.
        decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing
                        the loss scaling. Default is 0.5.
        incr_every_n_steps(int, optional): Increases loss scaling every n consecutive
                                steps with finite gradients. Default is 1000.
        decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n
                                    accumulated steps with nan or inf gradients. Default is 2.
        use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
    Returns:
        An AmpScaler object.

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle

        data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
        model = paddle.nn.Conv2D(3, 2, 3)
        optimizer = paddle.optimizer.SGDOptimizer(
                learning_rate=0.01, parameter_list=model.parameters())
        scaler = paddle.amp.AmpScaler(init_loss_scaling=1024)
        data = paddle.to_tensor(data)
        with paddle.amp.amp_guard():
            conv = model(data)
            loss = paddle.mean(conv)
            scaled = scaler.scale(loss)
            scaled.backward()
            scaler.minimize(optimizer, scaled)
    """

    @dygraph_only
    def __init__(
        self,
        enable=True,
        init_loss_scaling=2.0**15,
        incr_ratio=2.0,
        decr_ratio=0.5,
        incr_every_n_steps=1000,
        decr_every_n_nan_or_inf=1,
        use_dynamic_loss_scaling=True,
    ):

        tracer = _dygraph_tracer()
        if not tracer:
            raise ValueError(
                "current_tracer is None, maybe it is not in imperative mode."
            )

        if enable and not (
            tracer._expected_place.is_gpu_place()
            or tracer._expected_place.is_xpu_place()
            or tracer._expected_place.is_mlu_place()
            or tracer._expected_place.is_npu_place()
            or tracer._expected_place.is_custom_place()
        ):
            warnings.warn(
                'AmpScaler can only be enabled on CUDAPlace, XPUPlace, MLUPlace, NPUPlace and CustomPlace, current place is %s, so it makes no effect.'
                % tracer._expected_place
            )
            enable = False

        self._enable = enable

        if self._enable:
            assert incr_ratio > 1.0, "The incr_ratio must be > 1.0."
            assert decr_ratio < 1.0, "The decr_ratio must be < 1.0."

            self._init_loss_scaling = init_loss_scaling
            self._incr_ratio = incr_ratio
            self._decr_ratio = decr_ratio
            self._incr_every_n_steps = incr_every_n_steps
            self._decr_every_n_nan_or_inf = decr_every_n_nan_or_inf
            self._incr_count = 0
            self._decr_count = 0
            self._use_dynamic_loss_scaling = use_dynamic_loss_scaling

            self._found_inf = to_variable(np.array([0]).astype(np.bool_))
            self._temp_found_inf_fp16 = to_variable(
                np.array([0]).astype(np.bool_)
            )
            self._temp_found_inf_bf16 = to_variable(
                np.array([0]).astype(np.bool_)
            )
            self._temp_found_inf_fp32 = to_variable(
                np.array([0]).astype(np.bool_)
            )
            self._scale = to_variable(
                np.array([self._init_loss_scaling]).astype(np.float32)
            )
            self._cache_founf_inf = None
            self._optimizer_states = defaultdict(_refresh_optimizer_state)

    def scale(self, var):
        """
        Multiplies a Tensor by the scale factor and returns scaled outputs.
        If this instance of :class:`AmpScaler` is not enabled, output are returned unmodified.

        Args:
            var (Tensor):  The Tensor to scale.
        Returns:
            The scaled Tensor or original Tensor.

        Examples:

            .. code-block:: python

                import numpy as np
                import paddle

                data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
                model = paddle.nn.Conv2D(3, 2, 3)
                optimizer = paddle.optimizer.SGDOptimizer(
                        learning_rate=0.01, parameter_list=model.parameters())
                scaler = paddle.amp.AmpScaler(init_loss_scaling=1024)
                data = paddle.to_tensor(data)
                with paddle.amp.amp_guard():
                    conv = model(data)
                    loss = paddle.mean(conv)
                    scaled = scaler.scale(loss)
                    scaled.backward()
                    scaler.minimize(optimizer, scaled)
        """
        check_type(var, "var", core.VarBase, 'AmpScaler.scale()')

        if not self._enable:
            return var

        return var * self._scale

    def minimize(self, optimizer, *args, **kwargs):
        """
        This function is similar as `Optimizer.minimize()`, which performs parameters updating.

        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
        Otherwise, if `unscale_()` has not been called, it first unscales the scaled gradients of parameters, then updates the parameters.

        Finally, the loss scaling ratio is updated.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
            args:  Arguments, which will be forward to `optimizer.minimize()`.
            kwargs: Keyword arguments, which will be forward to `Optimizer.minimize()`.

        Examples:

            .. code-block:: python

                import numpy as np
                import paddle

                data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
                model = paddle.nn.Conv2D(3, 2, 3)
                optimizer = paddle.optimizer.SGDOptimizer(
                        learning_rate=0.01, parameter_list=model.parameters())
                scaler = paddle.amp.AmpScaler(init_loss_scaling=1024)
                data = paddle.to_tensor(data)
                with paddle.amp.amp_guard():
                    conv = model(data)
                    loss = paddle.mean(conv)
                    scaled = scaler.scale(loss)
                    scaled.backward()
                    scaler.minimize(optimizer, scaled)
        """
        if not self._enable:
            return optimizer.minimize(*args, **kwargs)

        optimizer_state = self._optimizer_states[id(optimizer)]

        #  unscale the grad
        if optimizer_state["state"] is OptimizerState.INIT:
            self._unscale(optimizer)

        optimize_ops, params_grads = (None, None)

231 232 233
        optimizer._set_auxiliary_var('found_inf', self._found_inf)
        optimize_ops, params_grads = optimizer.minimize(*args, **kwargs)
        self._cache_founf_inf = optimizer._get_auxiliary_var('found_inf')
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

        if self._use_dynamic_loss_scaling:
            # uopdate the scale
            self._update()

        self._optimizer_states = defaultdict(_refresh_optimizer_state)

        return optimize_ops, params_grads

    def _unscale(self, optimizer):
        """
        Unscale the gradients of parameters, multiplies the gradients of parameters by 1/(loss scaling ratio).
        If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.
        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
        Returns:
            The unscaled parameters or original parameters.
        """
        if not self._enable:
            return

        optimizer_state = self._optimizer_states[id(optimizer)]

        if optimizer_state["state"] is OptimizerState.UNSCALED:
            raise RuntimeError(
                "unscale_() has already been called on this optimizer since the last update()."
            )
        elif optimizer_state["state"] is OptimizerState.STEPPED:
            raise RuntimeError("unscale_() is being called after step().")

        if getattr(optimizer, '_param_groups', None) and isinstance(
            optimizer._param_groups[0], dict
        ):
            param_grads = []
            param_grads_fp16 = []
            param_grads_bf16 = []
            param_grads_fp32 = []
            for group in optimizer._param_groups:
                for param in group['params']:
                    if param._grad_ivar() is not None:
                        param_grads.append(param._grad_ivar())
                        if (
                            param._grad_ivar().dtype
                            == core.VarDesc.VarType.FP16
                        ):
                            param_grads_fp16.append(param._grad_ivar())
                        elif (
                            param._grad_ivar().dtype
                            == core.VarDesc.VarType.BF16
                        ):
                            param_grads_bf16.append(param._grad_ivar())
                        else:
                            param_grads_fp32.append(param._grad_ivar())
        else:
            if in_dygraph_mode():
                # It is very time-consuming to call c++ functions in a loop on the python side.
                # We put this part of the code on the c++ side to improve the speed in eager mode.
                (
                    param_grads_fp16,
                    param_grads_bf16,
                    param_grads_fp32,
                ) = core.eager.get_grads_lists(optimizer._parameter_list)
            else:
                # Keep the original code to support legacy mode.
                # Delete the else branch when the legacy mode exits.
                param_grads = [
                    param._grad_ivar()
                    for param in optimizer._parameter_list
                    if param._grad_ivar() is not None
                ]
                param_grads_fp16 = [
                    param
                    for param in param_grads
                    if param.dtype == core.VarDesc.VarType.FP16
                ]
                param_grads_bf16 = [
                    param
                    for param in param_grads
                    if param.dtype == core.VarDesc.VarType.BF16
                ]
                param_grads_fp32 = [
                    param
                    for param in param_grads
                    if param.dtype == core.VarDesc.VarType.FP32
                ]
        if core.is_compiled_with_npu():
            float_status = _legacy_C_ops.alloc_float_status()
            _legacy_C_ops.clear_float_status(float_status, float_status)

            if len(param_grads_fp16):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_fp16,
                    self._scale,
                    float_status,
                    param_grads_fp16,
                    self._temp_found_inf_fp16,
                )
331 332 333
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_fp16
                )
334 335 336 337 338 339 340 341
            if len(param_grads_bf16):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_bf16,
                    self._scale,
                    float_status,
                    param_grads_bf16,
                    self._temp_found_inf_bf16,
                )
342 343 344
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_bf16
                )
345 346 347 348 349 350 351 352
            if len(param_grads_fp32):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_fp32,
                    self._scale,
                    float_status,
                    param_grads_fp32,
                    self._temp_found_inf_fp32,
                )
353 354 355
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_fp32
                )
356 357 358 359 360 361 362 363
        else:
            if len(param_grads_fp16):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_fp16,
                    self._scale,
                    param_grads_fp16,
                    self._temp_found_inf_fp16,
                )
364 365 366
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_fp16
                )
367 368 369 370 371 372 373
            if len(param_grads_bf16):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_bf16,
                    self._scale,
                    param_grads_bf16,
                    self._temp_found_inf_bf16,
                )
374 375 376
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_bf16
                )
377 378 379 380 381 382 383
            if len(param_grads_fp32):
                _legacy_C_ops.check_finite_and_unscale(
                    param_grads_fp32,
                    self._scale,
                    param_grads_fp32,
                    self._temp_found_inf_fp32,
                )
384 385 386
                self._found_inf = _C_ops.bitwise_or(
                    self._found_inf, self._temp_found_inf_fp32
                )
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

        optimizer_state["state"] = OptimizerState.UNSCALED

    def _update(self):
        """
        Updates the loss_scaling.
        """
        if not self._enable:
            return

        if self._cache_founf_inf:
            self._incr_count = 0
            self._decr_count = self._decr_count + 1
            if self._decr_count == self._decr_every_n_nan_or_inf:
                print(
                    'Found inf or nan, current scale is: {}, decrease to: {}*{}'.format(
                        float(self._scale),
                        float(self._scale),
                        float(self._decr_ratio),
                    )
                )
                self._scale = self._scale * self._decr_ratio
                self._decr_count = 0
        else:
            self._decr_count = 0
            self._incr_count = self._incr_count + 1
            if self._incr_count == self._incr_every_n_steps:
                self._scale = self._scale * self._incr_ratio
                self._incr_count = 0

        return

    def is_enable(self):
        """
        Enable loss scaling or not.

        Returns:
            bool: enable loss scaling return True else return False.
        """
        return self._enable

    def is_use_dynamic_loss_scaling(self):
        """
        Whether to use dynamic loss scaling.

        Returns:
            bool: if fixed loss_scaling is used return False, if the loss scaling is updated dynamicly return true.
        """
        return self._use_dynamic_loss_scaling

    def get_init_loss_scaling(self):
        """
        Return the initial loss scaling factor.

        Reurns:
            float:  the initial loss scaling factor.
        """
        return self._init_loss_scaling

    def set_init_loss_scaling(self, new_init_loss_scaling):
        """
        Set the initial loss scaling factor by `new_init_loss_scaling`.

        Args:
            new_init_loss_scaling(int):  The new_init_loss_scaling used to update initial loss scaling factor.s
        """
        self._init_loss_scaling = new_init_loss_scaling
        self._scale = to_variable(
            np.array([self._init_loss_scaling]).astype(np.float32)
        )

    def get_incr_ratio(self):
        """
        Return the multiplier to use when increasing the loss scaling.

        Reurns:
            float:  the multiplier to use when increasing the loss scaling.
        """
        return self._incr_ratio

    def set_incr_ratio(self, new_incr_ratio):
        """
        Set the multiplier to use when increasing the loss scaling by `new_incr_ratio`, `new_incr_ratio` should > 1.0.

        Args:
            new_incr_ratio(float):  The new_incr_ratio used to update the multiplier to use when increasing the loss scaling.
        """
        assert new_incr_ratio > 1.0, "The new_incr_ratio must be > 1.0."
        self._incr_ratio = new_incr_ratio

    def get_decr_ratio(self):
        """
        Get the less-than-one-multiplier to use when decreasing the loss scaling.

        Reurns:
            float:  the less-than-one-multiplier to use when decreasing the loss scaling.
        """
        return self._decr_ratio

    def set_decr_ratio(self, new_decr_ratio):
        """
        Set the less-than-one-multiplier to use when decreasing the loss scaling by `new_incr_ratio`, `new_decr_ratio` should < 1.0.

        Args:
            new_decr_ratio(float):  The new_decr_ratio used to update the less-than-one-multiplier to use when decreasing the loss scaling.
        """
        assert new_decr_ratio < 1.0, "The new_decr_ratio must be < 1.0."
        self._decr_ratio = new_decr_ratio

    def get_incr_every_n_steps(self):
        """
        Return the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Reurns:
            int:  the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        """
        return self._incr_every_n_steps

    def set_incr_every_n_steps(self, new_incr_every_n_steps):
        """
        Set the num `n` by `new_incr_every_n_steps`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Args:
            new_incr_every_n_steps(int):  The new_incr_every_n_steps used to update the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        """
        self._incr_every_n_steps = new_incr_every_n_steps

    def get_decr_every_n_nan_or_inf(self):
        """
        Return the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Reurns:
            int:  the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        """
        return self._decr_every_n_nan_or_inf

    def set_decr_every_n_nan_or_inf(self, new_decr_every_n_nan_or_inf):
        """
        Set the num `n` by `new_decr_every_n_nan_or_inf`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Args:
            new_decr_every_n_nan_or_inf(int):  The new_decr_every_n_nan_or_inf used to update the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        """
        self._decr_every_n_nan_or_inf = new_decr_every_n_nan_or_inf

    def state_dict(self):
        """
        Returns the state of the scaler as a `dict`, If this instance is not enabled, returns an empty dict.

        Reurns:
            A dict of scaler includes:
            scale (tensor): The loss scaling factor.
            incr_ratio(float): The multiplier to use when increasing the loss scaling.
            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling.
            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients.
            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients.
            incr_count(int): The number of recent consecutive unskipped steps.
            decr_count(int): The number of recent consecutive skipped steps.
            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
        """
        return (
            {
                "scale": self._scale.numpy(),
                "incr_ratio": self._incr_ratio,
                "decr_ratio": self._decr_ratio,
                "incr_every_n_steps": self._incr_every_n_steps,
                "decr_every_n_nan_or_inf": self._decr_every_n_nan_or_inf,
                "incr_count": self._incr_count,
                "decr_count": self._decr_count,
                "use_dynamic_loss_scaling": self._use_dynamic_loss_scaling,
            }
            if self._enable
            else {}
        )

    def load_state_dict(self, state_dict):
        """
        Loads the scaler state.

        Args:
           state_dict(dict): scaler state.  Should be an object returned from a call to `AmpScaler.state_dict()`.
        """
        if not self._enable:
            return

        if len(state_dict) == 0:
            raise RuntimeError(
                "The input state dict is empty, possibly because it was saved "
                "from a disabled instance of GradScaler."
            )

        self._init_loss_scaling = state_dict["scale"][0]
        self._scale = to_variable(
            np.array([self._init_loss_scaling]).astype(np.float32)
        )
        self._incr_ratio = state_dict["incr_ratio"]
        self._decr_ratio = state_dict["decr_ratio"]
        self._incr_every_n_steps = state_dict["incr_every_n_steps"]
        self._decr_every_n_nan_or_inf = state_dict["decr_every_n_nan_or_inf"]
        self._incr_count = state_dict["incr_count"]
        self._decr_count = state_dict["decr_count"]
        self._use_dynamic_loss_scaling = state_dict["use_dynamic_loss_scaling"]


591 592
class GradScaler(AmpScaler):
    """
593
    GradScaler is used for Auto-Mixed-Precision training in dynamic graph mode.
594
    It controls the scaling of loss, helps avoiding numerical overflow.
595
    The object of this class has nineteen methods `scale()`, `unscale_()`, `minimize()`, `step()`, `update()` and `get`/`set` api of parameters.
596 597

    `scale()` is used to multiply the loss by a scale ratio.
598 599 600 601 602
    `unscale_()` is used to unscale the gradients of parameters, multiplies the gradients of parameters by 1/(scale ratio)
    `minimize()` is similar as `optimizer.minimize()`, performs parameters updating, and it will update the loss_scaling, it equal to `step()` + `update()`.
    `step()` is similar as `optimizer.step()`, which performs parameters updating.
    `update` is used to update the loss_scaling.

603

604
    Commonly, it is used together with `paddle.amp.auto_cast` to achieve Auto-Mixed-Precision in
605 606 607 608 609
    dynamic graph mode.

    Args:
        enable(bool, optional): Enable loss scaling or not. Default is True.
        init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15.
610
        incr_ratio(float, optional): The multiplier to use when increasing the loss
611
                        scaling. Default is 2.0.
612
        decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing
613
                        the loss scaling. Default is 0.5.
614
        incr_every_n_steps(int, optional): Increases loss scaling every n consecutive
615
                                steps with finite gradients. Default is 1000.
616
        decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n
617 618 619
                                    accumulated steps with nan or inf gradients. Default is 2.
        use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
    Returns:
620
        An GradScaler object.
621 622 623

    Examples:

624
        .. code-block:: python
625

626
            import paddle
627

628 629 630 631
            model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
            optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
            data = paddle.rand([10, 3, 32, 32])
L
Leo Chen 已提交
632

633 634 635
            with paddle.amp.auto_cast():
                conv = model(data)
                loss = paddle.mean(conv)
636 637

            scaled = scaler.scale(loss)  # scale the loss
L
Leo Chen 已提交
638
            scaled.backward()            # do backward
639
            scaler.minimize(optimizer, scaled)  # update parameters
640
            optimizer.clear_grad()
641 642
    """

643 644 645 646 647 648 649 650 651 652
    def __init__(
        self,
        enable=True,
        init_loss_scaling=2.0**15,
        incr_ratio=2.0,
        decr_ratio=0.5,
        incr_every_n_steps=1000,
        decr_every_n_nan_or_inf=2,
        use_dynamic_loss_scaling=True,
    ):
653
        super().__init__(
654 655 656 657 658 659 660 661
            enable,
            init_loss_scaling,
            incr_ratio,
            decr_ratio,
            incr_every_n_steps,
            decr_every_n_nan_or_inf,
            use_dynamic_loss_scaling,
        )
662 663 664

    def scale(self, var):
        """
665
        Multiplies a Tensor by the scale factor and returns scaled outputs.
666 667 668 669 670 671
        If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.

        Args:
            var (Tensor):  The tensor to scale.
        Returns:
            The scaled tensor or original tensor.
672

673
        Examples:
L
Leo Chen 已提交
674

675
            .. code-block:: python
676

677 678 679 680 681 682
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
L
Leo Chen 已提交
683

684 685 686
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
L
Leo Chen 已提交
687

688
                scaled = scaler.scale(loss)  # scale the loss
L
Leo Chen 已提交
689
                scaled.backward()            # do backward
690
                scaler.minimize(optimizer, scaled)  # update parameters
691
                optimizer.clear_grad()
692
        """
693
        return super().scale(var)
694 695 696

    def minimize(self, optimizer, *args, **kwargs):
        """
697
        This function is similar as `optimizer.minimize()`, which performs parameters updating.
698

699
        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
700
        Otherwise, if `unscale_()` has not been called, it first unscales the scaled gradients of parameters, then updates the parameters.
701 702 703 704 705 706

        Finally, the loss scaling ratio is updated.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
            args:  Arguments, which will be forward to `optimizer.minimize()`.
707
            kwargs: Keyword arguments, which will be forward to `optimizer.minimize()`.
708 709

        Examples:
L
Leo Chen 已提交
710

711 712
            .. code-block:: python

713 714 715 716 717 718
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
L
Leo Chen 已提交
719

720 721 722
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
L
Leo Chen 已提交
723

724
                scaled = scaler.scale(loss)  # scale the loss
L
Leo Chen 已提交
725
                scaled.backward()            # do backward
726
                scaler.minimize(optimizer, scaled)  # update parameters
727
                optimizer.clear_grad()
728
        """
729
        return super().minimize(optimizer, *args, **kwargs)
730

731 732 733
    def step(self, optimizer):
        """
        This function is similar as `optimizer.step()`, which performs parameters updating.
734

735
        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
736
        Otherwise, if `unscale_()` has not been called, it first unscales the scaled gradients of parameters, then updates the parameters.
737 738 739 740 741

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.

        Examples:
742

743
            .. code-block:: python
744

745 746
                # required: gpu
                import paddle
747

748 749 750 751 752 753 754
                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
755
                scaled = scaler.scale(loss)  # scale the loss
756
                scaled.backward()            # do backward
757 758
                scaler.step(optimizer)       # update parameters
                scaler.update()              # update the loss scaling ratio
759 760 761 762 763
                optimizer.clear_grad()
        """
        if not self._enable:
            return optimizer.step()

764 765 766
        optimizer_state = self._optimizer_states[id(optimizer)]
        if optimizer_state["state"] is OptimizerState.STEPPED:
            raise RuntimeError(
767 768
                "step() has already been called since the last update()."
            )
769

770
        #  unscale the grad
771 772
        if optimizer_state["state"] is OptimizerState.INIT:
            self._unscale(optimizer)
773

774 775 776
        optimizer._set_auxiliary_var('found_inf', self._found_inf)
        optimizer.step()
        self._cache_founf_inf = optimizer._get_auxiliary_var('found_inf')
777

778 779 780 781 782 783 784 785
        optimizer_state["state"] = OptimizerState.STEPPED

        if not self._use_dynamic_loss_scaling:
            self._optimizer_states = defaultdict(_refresh_optimizer_state)

    def update(self):
        """
        Updates the loss_scaling.
786

787 788 789
        Examples:

            .. code-block:: python
790

791 792 793 794 795 796 797 798 799 800
                # required: gpu
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
801
                scaled = scaler.scale(loss)     # scale the loss
802 803 804
                scaled.backward()               # do backward
                scaler.step(optimizer)          # update parameters
                scaler.update()                 # update the loss scaling ratio
805
                optimizer.clear_grad()
806 807 808
        """
        if not self._enable:
            return
809 810
        if self._use_dynamic_loss_scaling:
            self._update()
811 812 813 814 815
            self._optimizer_states = defaultdict(_refresh_optimizer_state)
        return

    def unscale_(self, optimizer):
        """
816
        Unscale the gradients of parameters, multiplies the gradients of parameters by 1/(loss scaling ratio).
817 818 819 820 821 822 823
        If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.

        Returns:
            The unscaled parameters or original parameters.
824

825 826 827 828 829 830 831 832 833 834 835 836 837 838
        Examples:

            .. code-block:: python

                # required: gpu
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
839
                scaled = scaler.scale(loss)  # scale the loss
840 841 842
                scaled.backward()            # do backward
                scaler.unscale_(optimizer)    # unscale the parameter
                scaler.step(optimizer)
843 844
                scaler.update()
                optimizer.clear_grad()
845
        """
846
        return super()._unscale(optimizer)
847

848 849 850 851 852 853
    def is_enable(self):
        """
        Enable loss scaling or not.

        Returns:
            bool: enable loss scaling return True else return False.
854

855 856 857
        Examples:
            .. code-block:: python

858
                # required: gpu,xpu
859 860 861 862 863 864 865 866 867 868 869
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                enable = scaler.is_enable()
                print(enable) # True
        """
870
        return super().is_enable()
871 872 873 874 875 876 877

    def is_use_dynamic_loss_scaling(self):
        """
        Whether to use dynamic loss scaling.

        Returns:
            bool: if fixed loss_scaling is used return False, if the loss scaling is updated dynamicly return true.
878

879 880
        Examples:
            .. code-block:: python
881

882
                # required: gpu,xpu
883 884 885 886 887 888 889 890 891 892 893
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                use_dynamic_loss_scaling = scaler.is_use_dynamic_loss_scaling()
                print(use_dynamic_loss_scaling) # True
        """
894
        return super().is_use_dynamic_loss_scaling()
895 896 897 898 899 900 901

    def get_init_loss_scaling(self):
        """
        Return the initial loss scaling factor.

        Reurns:
            float:  the initial loss scaling factor.
902

903 904 905
        Examples:
            .. code-block:: python

906
                # required: gpu,xpu
907 908 909 910 911 912 913 914 915 916 917
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                init_loss_scaling = scaler.get_init_loss_scaling()
                print(init_loss_scaling) # 1024
        """
918
        return super().get_init_loss_scaling()
919 920 921 922 923 924

    def set_init_loss_scaling(self, new_init_loss_scaling):
        """
        Set the initial loss scaling factor by `new_init_loss_scaling`.

        Args:
925
            new_init_loss_scaling(float):  The new_init_loss_scaling used to update initial loss scaling factor.
926

927 928
        Examples:
            .. code-block:: python
929

930
                # required: gpu,xpu
931 932 933 934 935 936 937 938 939 940 941 942 943
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_init_loss_scaling()) # 1024
                new_init_loss_scaling = 1000
                scaler.set_init_loss_scaling(new_init_loss_scaling)
                print(scaler.get_init_loss_scaling()) # 1000
        """
944
        super().set_init_loss_scaling(new_init_loss_scaling)
945 946 947 948 949 950 951

    def get_incr_ratio(self):
        """
        Return the multiplier to use when increasing the loss scaling.

        Reurns:
            float:  the multiplier to use when increasing the loss scaling.
952

953 954 955
        Examples:
            .. code-block:: python

956
                # required: gpu,xpu
957 958 959 960 961 962 963 964 965 966 967
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                incr_ratio = scaler.get_incr_ratio()
                print(incr_ratio) # 2.0
        """
968
        return super().get_incr_ratio()
969 970 971 972 973 974 975

    def set_incr_ratio(self, new_incr_ratio):
        """
        Set the multiplier to use when increasing the loss scaling by `new_incr_ratio`, `new_incr_ratio` should > 1.0.

        Args:
            new_incr_ratio(float):  The new_incr_ratio used to update the multiplier to use when increasing the loss scaling.
976

977 978 979
        Examples:
            .. code-block:: python

980
                # required: gpu,xpu
981 982 983 984 985 986 987 988 989 990 991 992 993
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_incr_ratio()) # 2.0
                new_incr_ratio = 3.0
                scaler.set_incr_ratio(new_incr_ratio)
                print(scaler.get_incr_ratio()) # 3.0
        """
994
        super().set_incr_ratio(new_incr_ratio)
995 996 997 998 999 1000 1001

    def get_decr_ratio(self):
        """
        Get the less-than-one-multiplier to use when decreasing the loss scaling.

        Reurns:
            float:  the less-than-one-multiplier to use when decreasing the loss scaling.
1002

1003 1004 1005
        Examples:
            .. code-block:: python

1006
                # required: gpu,xpu
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                decr_ratio = scaler.get_decr_ratio()
                print(decr_ratio) # 0.5
        """
1018
        return super().get_decr_ratio()
1019 1020 1021 1022 1023 1024 1025

    def set_decr_ratio(self, new_decr_ratio):
        """
        Set the less-than-one-multiplier to use when decreasing the loss scaling by `new_incr_ratio`, `new_decr_ratio` should < 1.0.

        Args:
            new_decr_ratio(float):  The new_decr_ratio used to update the less-than-one-multiplier to use when decreasing the loss scaling.
1026

1027 1028 1029
        Examples:
            .. code-block:: python

1030
                # required: gpu,xpu
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_decr_ratio()) # 0.5
                new_decr_ratio = 0.1
                scaler.set_decr_ratio(new_decr_ratio)
                print(scaler.get_decr_ratio()) # 0.1
        """
1044
        super().set_decr_ratio(new_decr_ratio)
1045 1046 1047 1048 1049 1050 1051

    def get_incr_every_n_steps(self):
        """
        Return the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Reurns:
            int:  the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
1052

1053 1054 1055
        Examples:
            .. code-block:: python

1056
                # required: gpu,xpu
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                incr_every_n_steps = scaler.get_incr_every_n_steps()
                print(incr_every_n_steps) # 1000
        """
1068
        return super().get_incr_every_n_steps()
1069 1070 1071 1072 1073 1074 1075

    def set_incr_every_n_steps(self, new_incr_every_n_steps):
        """
        Set the num `n` by `new_incr_every_n_steps`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Args:
            new_incr_every_n_steps(int):  The new_incr_every_n_steps used to update the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
1076

1077 1078 1079
        Examples:
            .. code-block:: python

1080
                # required: gpu,xpu
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_incr_every_n_steps()) # 1000
                new_incr_every_n_steps = 2000
                scaler.set_incr_every_n_steps(new_incr_every_n_steps)
                print(scaler.get_incr_every_n_steps()) # 2000
        """
1094
        super().set_incr_every_n_steps(new_incr_every_n_steps)
1095 1096 1097 1098 1099 1100 1101

    def get_decr_every_n_nan_or_inf(self):
        """
        Return the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Reurns:
            int:  the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
1102

1103 1104 1105
        Examples:
            .. code-block:: python

1106
                # required: gpu,xpu
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                decr_every_n_nan_or_inf = scaler.get_decr_every_n_nan_or_inf()
                print(decr_every_n_nan_or_inf) # 2
        """
1118
        return super().get_decr_every_n_nan_or_inf()
1119 1120 1121 1122 1123 1124 1125

    def set_decr_every_n_nan_or_inf(self, new_decr_every_n_nan_or_inf):
        """
        Set the num `n` by `new_decr_every_n_nan_or_inf`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Args:
            new_decr_every_n_nan_or_inf(int):  The new_decr_every_n_nan_or_inf used to update the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
1126

1127 1128 1129
        Examples:
            .. code-block:: python

1130
                # required: gpu,xpu
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_decr_every_n_nan_or_inf()) # 2
                new_decr_every_n_nan_or_inf = 3
                scaler.set_decr_every_n_nan_or_inf(new_decr_every_n_nan_or_inf)
                print(scaler.get_decr_every_n_nan_or_inf()) # 3
        """
1144
        super().set_decr_every_n_nan_or_inf(new_decr_every_n_nan_or_inf)
1145 1146 1147 1148 1149 1150 1151

    def state_dict(self):
        """
        Returns the state of the scaler as a `dict`, If this instance is not enabled, returns an empty dict.

        Reurns:
            A dict of scaler includes:
1152 1153 1154 1155 1156 1157 1158 1159 1160
            scale (tensor): The loss scaling factor.
            incr_ratio(float): The multiplier to use when increasing the loss scaling.
            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling.
            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients.
            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients.
            incr_count(int): The number of recent consecutive unskipped steps.
            decr_count(int): The number of recent consecutive skipped steps.
            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.

1161

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
        Examples:

            .. code-block:: python

                # required: gpu,xpu
                import paddle

                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                scaler_state = scaler.state_dict()
        """
1178
        return super().state_dict()
1179 1180 1181 1182

    def load_state_dict(self, state_dict):
        """
        Loads the scaler state.
1183

1184 1185
        Args:
           state_dict(dict): scaler state.  Should be an object returned from a call to `GradScaler.state_dict()`.
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
        Examples:

            .. code-block:: python

                # required: gpu,xpu
                import paddle

                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                scaler_state = scaler.state_dict()
                scaler.load_state_dict(scaler_state)
        """
1204
        super().load_state_dict(state_dict)