slice_op.cc 20.6 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
#include <algorithm>
17
#include <memory>
18
#include <string>
W
whs 已提交
19
#include <vector>
H
hong 已提交
20
#include "paddle/phi/kernels/funcs/slice_utils.h"
W
whs 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

31
  void InferShape(framework::InferShapeContext *ctx) const override {
32 33
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "slice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "slice");
34

35
    // Case 1: Special treatment when input is a tensor array.
36 37 38 39 40 41 42 43 44 45 46 47 48 49
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      PADDLE_ENFORCE_EQ(axes.size(), 1,
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
50 51
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
52 53 54 55 56 57
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
58 59

    // Case 2: input is a tensor.
W
whs 已提交
60
    auto in_dims = ctx->GetInputDim("Input");
61
    PADDLE_ENFORCE_LT(in_dims.size(), 7,
T
Thunderbrook 已提交
62 63
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
64
    framework::DDim out_dims(in_dims);
65

W
whs 已提交
66 67
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
H
Hongyu Liu 已提交
68
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
69
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
70 71 72 73 74 75
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

76 77 78 79
    // 2.1 Check attrs.
    auto starts_size = starts.size();
    auto ends_size = ends.size();

80
    if (ctx->HasInputs("StartsTensorList")) {
81 82
      starts_size = ctx->Inputs("StartsTensorList").size();
      PADDLE_ENFORCE_GT(starts_size, 0,
T
Thunderbrook 已提交
83 84
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
85 86
    }
    if (ctx->HasInputs("EndsTensorList")) {
87 88 89
      ends_size = ctx->Inputs("EndsTensorList").size();
      PADDLE_ENFORCE_GT(ends_size, 0, platform::errors::InvalidArgument(
                                          "EndsTensorList size can't be zero"));
90 91
    }

92
    if (!ctx->HasInput("StartsTensor")) {
93 94
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
T
Thunderbrook 已提交
95 96
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
97
    }
98
    if (!ctx->HasInput("EndsTensor")) {
T
Thunderbrook 已提交
99 100 101 102
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
103
    }
104 105 106 107 108
    for (auto &axis : axes) {
      if (axis < 0) {
        axis = std::max(0, axis + in_dims.size());
      }
    }
H
hong 已提交
109 110
    phi::funcs::CheckAndUpdateSliceAttrs<int>(in_dims, axes, &starts, &ends,
                                              nullptr, &infer_flags);
H
Hongyu Liu 已提交
111

H
hong 已提交
112 113
    auto slice_dims = phi::funcs::GetSliceDims<int>(in_dims, axes, starts, ends,
                                                    nullptr, &infer_flags);
114
    if (ctx->IsRuntime()) {
H
hong 已提交
115 116
      out_dims = phi::funcs::GetDecreasedDims<int>(slice_dims, decrease_axis,
                                                   &infer_flags);
117
    } else {
H
hong 已提交
118 119
      out_dims =
          phi::funcs::GetDecreasedDims<int>(slice_dims, decrease_axis, nullptr);
H
Hongyu Liu 已提交
120
    }
121

W
whs 已提交
122
    ctx->SetOutputDim("Out", out_dims);
123
    if (axes.size() > 0 && axes[0] != 0) {
J
jerrywgz 已提交
124 125
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
126 127 128 129
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
130
      const framework::ExecutionContext &ctx) const override {
131 132 133 134 135 136 137
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
          in_tensor.IsInitialized(), true,
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
138 139
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
140 141 142
        return framework::OpKernelType(
            framework::TransToProtoVarType(in_tensor.dtype()),
            ctx.device_context());
143
      }
144 145 146 147 148 149 150 151 152 153 154

#ifdef PADDLE_WITH_MKLDNN
      auto input_data_type =
          framework::OperatorWithKernel::IndicateVarDataType(ctx, "Input");

      if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
        // OneDNN uses blocking format, which cannot be always supported with
        // reorders, because if blocked dimension is not divisible by 8 or
        // 16(depending on which blocking format is used) submemory cannot be
        // created, so in that scenario a fallback is needed
        auto tmp_md = dnnl::memory::desc(
155
            phi::vectorize(ctx.Input<Tensor>("Input")->dims()),
156 157 158 159 160 161 162 163
            dnnl::memory::data_type::f32, ctx.Input<Tensor>("Input")->format());
        if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
          return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                         framework::DataLayout::kMKLDNN,
                                         framework::LibraryType::kMKLDNN);
      }
#endif

164 165
      return framework::OpKernelType(
          framework::TransToProtoVarType(in_tensor.dtype()), in_tensor.place());
166
    }
167
    return framework::OpKernelType(
168
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
169
  }
170

171 172 173 174 175 176 177 178 179 180 181
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
W
whs 已提交
182 183 184
  }
};

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
    auto not_decrease = boost::get<std::vector<int>>(decrease_axis).size() == 0;
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
204 205 206
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
232 233 234 235 236 237 238
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
239 240 241 242 243
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
244
    AddAttr<std::vector<int>>(
245 246
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
247 248
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
249 250
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
251 252
        .SetDefault(false)
        .AsExtra();
253 254 255 256
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
Z
Zuza 已提交
257
        .InEnum({"float32", "int8", "bfloat16"})
258
        .AsExtra();
W
whs 已提交
259 260 261 262 263
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
264
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
265
end dimension for each axis in the list of axes, it uses this information
266 267
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
268
of that dimension. If the value passed to start or end is larger than
269 270
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
271
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
272 273
Following examples will explain how slice works:

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
292 293 294 295
)DOC");
  }
};

296 297 298 299
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

300
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
301 302 303
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::InvalidArgument("Input should not be null"));
304
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
T
Thunderbrook 已提交
305 306
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
307 308 309 310 311 312 313 314
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
315 316 317 318 319 320
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
321

322
  framework::OpKernelType GetExpectedKernelType(
323
      const framework::ExecutionContext &ctx) const override {
324 325 326 327 328 329 330 331 332 333
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
      // created, so in that scenario a fallback is needed
      auto tmp_md = dnnl::memory::desc(
334
          phi::vectorize(
335 336 337 338 339 340 341 342 343 344
              ctx.Input<Tensor>(framework::GradVarName("Out"))->dims()),
          dnnl::memory::data_type::f32,
          ctx.Input<Tensor>(framework::GradVarName("Out"))->format());
      if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
        return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
345
  }
346

347 348 349 350 351 352 353 354 355 356 357
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
358
  }
359 360
};

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
376 377
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
378
 public:
H
hong 已提交
379
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
380 381

 protected:
382
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
383
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
384 385 386 387 388 389 390 391 392 393 394 395
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
396 397 398
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
399 400 401 402
    bind->SetType("slice_grad");
  }
};

403 404 405 406 407 408
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
409
  void Apply(GradOpPtr<T> bind) const override {
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

429
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
430
                                    "Input");
431

W
whs 已提交
432 433 434 435 436
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
H
hong 已提交
437
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
438 439
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
440
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
441 442
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
443
                  ops::SliceOpGradNoNeedBufferVarsInferer,
444
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
445 446

REGISTER_OP_CPU_KERNEL(
W
WeiXin 已提交
447 448
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
W
whs 已提交
449 450
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
451 452
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
453
                     paddle::platform::complex<float>>,
454
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
455 456 457
                     paddle::platform::complex<double>>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::bfloat16>);
458 459

REGISTER_OP_CPU_KERNEL(
W
WeiXin 已提交
460 461
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
462 463
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
464 465
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
466
                         paddle::platform::complex<float>>,
467
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
468 469 470
                         paddle::platform::complex<double>>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::bfloat16>);
471 472

REGISTER_OP_CUDA_KERNEL(
W
WeiXin 已提交
473 474
    slice, ops::SliceKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, float>,
475 476 477 478 479
    ops::SliceKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>,
480 481
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::bfloat16>,
482
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
483
                     paddle::platform::complex<float>>,
484
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
485
                     paddle::platform::complex<double>>);
486 487

REGISTER_OP_CUDA_KERNEL(
W
WeiXin 已提交
488
    slice_grad, ops::SliceGradKernel<paddle::platform::CUDADeviceContext, bool>,
489 490 491 492 493 494
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>,
495 496
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::bfloat16>,
497
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
498
                         paddle::platform::complex<float>>,
499
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
500
                         paddle::platform::complex<double>>);