slice_op.cc 19.3 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
#include <algorithm>
17
#include <memory>
18
#include <string>
W
whs 已提交
19 20 21 22 23 24 25 26 27 28 29
#include <vector>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

30 31
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
T
Thunderbrook 已提交
32 33
                      platform::errors::InvalidArgument(
                          "Input (Input) of slice op should not be null."));
34 35

    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
T
Thunderbrook 已提交
36 37
                      platform::errors::InvalidArgument(
                          "Output (Out) of slice op should not be null."));
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      PADDLE_ENFORCE_EQ(axes.size(), 1,
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
52 53
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
54 55 56 57 58 59
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
W
whs 已提交
60
    auto in_dims = ctx->GetInputDim("Input");
61
    PADDLE_ENFORCE_LT(in_dims.size(), 7,
T
Thunderbrook 已提交
62 63
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
64
    framework::DDim out_dims(in_dims);
65

W
whs 已提交
66 67
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
68
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
H
Hongyu Liu 已提交
69
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
W
whs 已提交
70

71 72 73 74 75 76 77 78 79 80 81
    auto starts_size = starts.size();
    auto ends_size = ends.size();
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

    if (ctx->HasInputs("StartsTensorList")) {
      auto StartsTensorList = ctx->Inputs("StartsTensorList");
      PADDLE_ENFORCE_GT(StartsTensorList.size(), 0,
T
Thunderbrook 已提交
82 83
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
84 85 86 87 88
      starts_size = StartsTensorList.size();
    }
    if (ctx->HasInputs("EndsTensorList")) {
      auto EndsTensorList = ctx->Inputs("EndsTensorList");
      PADDLE_ENFORCE_GT(EndsTensorList.size(), 0,
T
Thunderbrook 已提交
89 90
                        platform::errors::InvalidArgument(
                            "EndsTensorList size can't be zero"));
91 92 93 94 95 96
      ends_size = EndsTensorList.size();
    }

    if (ctx->HasInput("StartsTensor") == false) {
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
T
Thunderbrook 已提交
97 98
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
99 100
    }
    if (ctx->HasInput("EndsTensor") == false) {
T
Thunderbrook 已提交
101 102 103 104
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
105 106
    }

W
whs 已提交
107 108
    int dim_value, start, end;
    for (size_t i = 0; i < axes.size(); ++i) {
109
      PADDLE_ENFORCE_LT(static_cast<int>(axes[i]), in_dims.size(),
T
Thunderbrook 已提交
110 111 112
                        platform::errors::InvalidArgument(
                            "The index of dimension in axes must be less "
                            "than the size of input shape."));
113 114 115 116 117 118 119 120 121 122 123
      if (infer_flags[i] == -1) {
        out_dims[axes[i]] = -1;
      } else {
        // infer out_dim shape
        dim_value = out_dims[axes[i]];
        if (dim_value > 0) {
          start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
          end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
          start = std::max(start, 0);
          end = std::max(end, 0);
          end = std::min(end, dim_value);
L
liym27 已提交
124 125 126 127 128 129 130

          PADDLE_ENFORCE_LE(start, dim_value,
                            platform::errors::InvalidArgument(
                                "start should be less than or equal to the "
                                "dimension value, but received "
                                "start = %d, shape[%d] = %d.",
                                starts[i], axes[i], out_dims[axes[i]]));
131 132 133 134 135
          PADDLE_ENFORCE_GT(end, start,
                            platform::errors::InvalidArgument(
                                "end should greater than start, but received "
                                "end = %d, start = %d.",
                                ends[i], starts[i]));
136 137
          out_dims[axes[i]] = end - start;
        }
H
Hongyu Liu 已提交
138
      }
W
whs 已提交
139
    }
H
Hongyu Liu 已提交
140 141 142 143
    // generate new shape
    if (decrease_axis.size() > 0) {
      std::vector<int> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
144
        if (ctx->IsRuntime() && infer_flags[i] != -1) {
T
Thunderbrook 已提交
145 146 147
          PADDLE_ENFORCE_EQ(
              out_dims[decrease_axis[i]], 1,
              platform::errors::InvalidArgument("decrease dim should be 1"));
H
Hongyu Liu 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        }
        out_dims[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims.size(); ++i) {
        if (out_dims[i] != 0) {
          new_out_shape.push_back(out_dims[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }

      out_dims = framework::make_ddim(new_out_shape);
    }
W
whs 已提交
163
    ctx->SetOutputDim("Out", out_dims);
J
jerrywgz 已提交
164 165 166
    if (axes[0] != 0) {
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
167 168 169 170
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
171
      const framework::ExecutionContext &ctx) const override {
172 173 174 175 176 177 178
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
          in_tensor.IsInitialized(), true,
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
179 180 181 182
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
        return framework::OpKernelType(in_tensor.type(), ctx.device_context());
      }
183 184
      return framework::OpKernelType(in_tensor.type(), in_tensor.place());
    }
185
    return framework::OpKernelType(
186
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
187 188 189 190 191 192 193 194 195 196 197 198
  }
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
W
whs 已提交
199 200 201
  }
};

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
    auto not_decrease = boost::get<std::vector<int>>(decrease_axis).size() == 0;
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
221 222 223
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
249 250 251 252 253 254 255
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
256 257 258 259 260
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
261
    AddAttr<std::vector<int>>(
262 263
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
264 265
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
W
whs 已提交
266 267 268 269 270
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
271
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
272
end dimension for each axis in the list of axes, it uses this information
273 274
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
275
of that dimension. If the value passed to start or end is larger than
276 277
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
278
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
279 280
Following examples will explain how slice works:

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
299 300 301 302
)DOC");
  }
};

303 304 305 306
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

307
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
308 309 310
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::InvalidArgument("Input should not be null"));
311
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
T
Thunderbrook 已提交
312 313
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
314 315 316 317 318 319 320 321
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
322 323 324 325 326 327
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
328
  framework::OpKernelType GetExpectedKernelType(
329
      const framework::ExecutionContext &ctx) const override {
330 331 332
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
333 334 335 336 337 338 339 340 341 342 343 344
  }
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
345
  }
346 347
};

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
363 364
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
365
 public:
H
hong 已提交
366
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
367 368

 protected:
369
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
370
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
371 372 373 374 375 376 377 378 379 380 381 382
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
383 384 385
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
386 387 388 389
    bind->SetType("slice_grad");
  }
};

390 391 392 393 394 395
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
396
  void Apply(GradOpPtr<T> bind) const override {
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

416
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
417
                                    "Input");
418

W
whs 已提交
419 420 421 422 423
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
H
hong 已提交
424
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
425 426
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
427
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
428 429
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
430
                  ops::SliceOpGradNoNeedBufferVarsInferer,
431
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
432 433 434 435 436

REGISTER_OP_CPU_KERNEL(
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
437 438
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
439
                     paddle::platform::complex<float>>,
440
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
441
                     paddle::platform::complex<double>>);
442 443 444 445 446

REGISTER_OP_CPU_KERNEL(
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
447 448
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
449
                         paddle::platform::complex<float>>,
450
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
451
                         paddle::platform::complex<double>>);
452 453 454 455 456 457 458 459 460

REGISTER_OP_CUDA_KERNEL(
    slice, ops::SliceKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
461
                     paddle::platform::complex<float>>,
462
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
463
                     paddle::platform::complex<double>>);
464 465 466 467 468 469 470 471 472 473

REGISTER_OP_CUDA_KERNEL(
    slice_grad,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
474
                         paddle::platform::complex<float>>,
475
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
476
                         paddle::platform::complex<double>>);