device_context.h 21.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
37
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
38
#include "mkldnn.hpp"
39
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
40 41
#endif

42
#include <map>
W
wanghuancoder 已提交
43

44
#include "glog/logging.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
47
#ifdef PADDLE_WITH_CUDA
48
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
49
#endif
50 51 52
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
53
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
54

W
wanghuancoder 已提交
55 56 57 58 59
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

60 61
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
62
#include "paddle/fluid/platform/xpu_info.h"
63 64
#endif

65 66 67 68 69
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
70 71 72
namespace paddle {
namespace platform {

73 74 75 76 77
#ifdef PADDLE_WITH_CUDA
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
78 79 80 81
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
82 83
#endif  // PADDLE_WITH_CUDA

84 85 86 87
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
88
  NPU = 3,
89 90 91 92 93
};

constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
94
constexpr DeviceType kNPU = DeviceType::NPU;
95

Q
QI JUN 已提交
96 97
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
98
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
99
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
100

101
  virtual void Wait() const {}
Q
QI JUN 已提交
102 103
};

Q
qijun 已提交
104 105
class CPUDeviceContext : public DeviceContext {
 public:
106
  CPUDeviceContext();
Q
qijun 已提交
107
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
108

109
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
110

L
liaogang 已提交
111
  Place GetPlace() const override;
Y
Yu Yang 已提交
112

Q
qijun 已提交
113
 private:
D
dzhwinter 已提交
114
  CPUPlace place_;
Q
qijun 已提交
115
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
116 117
};

Y
Yang Yu 已提交
118 119 120 121 122 123 124 125
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

139
#ifdef PADDLE_WITH_XPU_BKCL
140
  /*! \brief  Return bkcl context. */
141 142 143 144 145 146
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

147 148 149
 private:
  XPUPlace place_;
  xpu::Context* context_;
150 151 152
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
153 154 155 156 157 158 159 160 161 162 163 164 165

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext* context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

#ifdef PADDLE_WITH_ASCEND_HCCL
  /*! \brief  Return bkcl context. */
  HCCLContext_t hccl_context() const { return hccl_context_; }

  /*! \brief  Set bkcl context. */
  void set_hccl_context(HCCLContext_t context) { hccl_context_ = context; }
#endif

 private:
  NPUPlace place_;
  aclrtContext context_;
#ifdef PADDLE_WITH_ASCEND_HCCL
  HCCLContext_t hccl_context_;
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
#endif

206
#ifdef PADDLE_WITH_CUDA
207

208
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
209
class EigenCudaStreamDevice;
S
sneaxiy 已提交
210

211 212 213 214 215
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
216
      const stream::Priority& priority = stream::Priority::kNormal);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

  const cudaStream_t& RawStream() { return stream_->raw_stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

G
Guo Sheng 已提交
236 237 238 239
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }

240 241 242 243 244 245 246 247 248 249 250
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
251 252 253 254 255
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
282 283 284 285 286
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    }
  }

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
305 306
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
307
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
308 309 310 311 312
    } else {
      cudnn_handle_ = nullptr;
    }
  }

G
Guo Sheng 已提交
313
  void InitCuSolverContext() {
314 315
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
316 317 318
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }

319 320
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
321
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
322 323 324 325 326 327 328
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
329
    cublas_tf32_tensor_core_handle_.reset();
330 331
  }

G
Guo Sheng 已提交
332 333 334 335 336 337 338
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }

339 340 341 342 343 344 345
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
346
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
G
Guo Sheng 已提交
347
  cusolverDnHandle_t cusolver_dn_handle_;
348 349 350
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

351
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
352
 public:
D
dzhwinter 已提交
353
  explicit CUDADeviceContext(CUDAPlace place);
354
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
355

356
  /*! \brief  Wait for all operations completion in the stream. */
357
  void Wait() const override;
Q
QI JUN 已提交
358

359
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
360
  Place GetPlace() const override;
361

K
Kexin Zhao 已提交
362
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
363 364
  int GetComputeCapability() const;

365 366 367
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

368 369 370 371 372 373
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

374 375 376
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

377 378 379
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

380 381 382
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
383
    return context()->CublasCall(callback);
384 385 386 387 388 389 390 391 392
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
393
    return context()->TensorCoreCublasCallIfAvailable(callback);
394
  }
S
sneaxiy 已提交
395

396
  /*! \brief  Return cudnn  handle in the device context. */
397
  cudnnHandle_t cudnn_handle() const;
398

S
sneaxiy 已提交
399 400 401 402 403 404 405 406 407
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

G
Guo Sheng 已提交
408 409
  cusolverDnHandle_t cusolver_dn_handle() const;

Q
init  
qijun 已提交
410
  /*! \brief  Return cuda stream in the device context. */
411
  cudaStream_t stream() const;
Q
QI JUN 已提交
412

413
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
414 415 416 417 418
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
419
#endif
Q
qingqing01 已提交
420

Y
Yu Yang 已提交
421
  template <typename Callback>
422 423
  void RecordEvent(cudaEvent_t ev, Callback callback) const {
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
424 425
  }

S
sneaxiy 已提交
426 427
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
428 429 430 431 432
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
433 434
  }

435
  void ResetDefaultContext(const stream::Priority& priority) {
436 437 438
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

439
  void ResetThreadContext(const stream::Priority& priority) {
440 441 442 443 444 445 446 447 448 449
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
450

Q
QI JUN 已提交
451
 private:
D
dzhwinter 已提交
452
  CUDAPlace place_;
453
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
454

455 456 457 458 459 460
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
461

462 463
  mutable std::mutex cudnn_handle_mtx_;

464
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
465 466 467 468 469 470
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
471
#endif
Q
qingqing01 已提交
472

C
chengduo 已提交
473 474 475 476 477
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
478
  int max_threads_per_block_;
479
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
480

481
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
482
};
Q
qijun 已提交
483

484 485
class CudnnWorkspaceHandle {
 public:
486 487
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
488 489 490 491 492 493 494 495

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
496 497 498 499
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
500 501 502 503 504 505 506 507 508 509 510 511 512
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

513
  void ReallocWorkspace(size_t required_workspace_bytes);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
530
  std::mutex* mtx_;
531 532
};

Y
Yang Yu 已提交
533 534
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
535
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
536 537
};

C
chengduoZH 已提交
538
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
539 540 541 542 543 544
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
545

C
chengduoZH 已提交
546 547 548 549 550 551 552 553 554 555 556
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
557
#endif
Q
qijun 已提交
558

T
tensor-tang 已提交
559
#ifdef PADDLE_WITH_MKLDNN
560 561 562 563 564 565

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
566
    bool said_once = false;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;

    Body();
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
586
    void log_lib_version(void);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
602

T
tensor-tang 已提交
603 604
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
622 623 624
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
625
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
626

627
  // Remove all entries from the blob map
628 629
  void ResetBlobMap();

630 631 632 633
  // Set a suffix to be added to key
  void SetKeySuffix(const std::string& suffix) { key_suffix_ = suffix; }
  const std::string& GetKeySuffix(void) const { return key_suffix_; }

634
  // Disable adding  thread ID to the key
635 636
  void DisableThreadInfoInKey(void) { key_attach_thread_id_ = false; }
  bool IsThreadIdUsedInKey(void) const { return key_attach_thread_id_; }
637

638 639
  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
640

641 642 643
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

644 645
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
646

647 648 649
  // Calculate number of oneDNN objects cached
  unsigned int GetCachedObjectsNumber(void);

650 651
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
652

653 654 655 656
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
657
 private:
658
  mkldnn::engine engine_;
659 660
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
661
  bool block_next_cache_clearing_ = false;
662
  std::string key_suffix_;  // Key identifying current Executor
663
  bool key_attach_thread_id_ = true;
T
tensor-tang 已提交
664 665 666
};
#endif

D
dzhwinter 已提交
667 668 669 670 671
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
672
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
673 674 675
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
676 677 678 679
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
680
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
681 682 683 684 685 686
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

687 688
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
689
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
690
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
691

Y
Yang Yu 已提交
692 693 694 695 696 697 698
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

699 700
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
701 702
 private:
  static DeviceContextPool* pool;
703 704
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
705 706 707
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
708 709
}  // namespace platform
}  // namespace paddle