communicator.cc 32.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/distributed/communicator.h"
16

Q
Qiao Longfei 已提交
17
#include <gflags/gflags.h>
18
#include <paddle/fluid/framework/program_desc.h>
19

20
#include <algorithm>
Q
Qiao Longfei 已提交
21
#include <chrono>  // NOLINT
22
#include <map>
Q
Qiao Longfei 已提交
23
#include <thread>  // NOLINT
24
#include <unordered_set>
25

Q
Qiao Longfei 已提交
26
#include "paddle/fluid/framework/eigen.h"
Q
Qiao Longfei 已提交
27 28
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor_util.h"
29
#include "paddle/fluid/framework/threadpool.h"
Q
Qiao Longfei 已提交
30
#include "paddle/fluid/framework/variable_helper.h"
C
Chengmo 已提交
31
#include "paddle/fluid/operators/distributed/distributed.h"
Q
Qiao Longfei 已提交
32 33
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/operators/distributed/parameter_send.h"
T
tangwei12 已提交
34
#include "paddle/fluid/string/printf.h"
35
#include "paddle/fluid/string/split.h"
Q
Qiao Longfei 已提交
36

Q
Qiao Longfei 已提交
37 38 39 40
namespace paddle {
namespace operators {
namespace distributed {

41 42 43 44
using Tree =
    std::map<std::string, std::map<std::string, std::vector<std::string>>>;
using RpcCtxMap = operators::distributed::RpcCtxMap;

Q
Qiao Longfei 已提交
45 46 47 48 49 50
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

51
Communicator::Communicator() {}
1
123malin 已提交
52

T
tangwei12 已提交
53
std::once_flag Communicator::init_flag_;
54
std::shared_ptr<Communicator> Communicator::communicator_(nullptr);
Q
can run  
Qiao Longfei 已提交
55

T
tangwei12 已提交
56 57 58 59 60 61 62
void AsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                 const RpcCtxMap &recv_varname_to_ctx,
                                 Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

63 64 65 66 67
  if (send_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be send, will not start send_thread";
  } else {
    send_scope_.reset(new Scope());
    for (auto &iter : send_varname_to_ctx_) {
68
      if (iter.first == STEP_COUNTER && !need_global_step_) continue;
69 70
      send_varname_to_queue_[iter.first] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
71
              send_queue_size_);
72
    }
73
    send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
74 75 76 77 78
  }

  if (recv_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be received, will not start recv_thread";
  } else {
79
    recv_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
Q
Qiao Longfei 已提交
80
  }
T
tangwei12 已提交
81 82

  InitParams();
Q
Qiao Longfei 已提交
83 84
}

T
tangwei12 已提交
85 86
void AsyncCommunicator::InitParams() { RecvNoBarrier(); }

87 88 89 90 91 92 93 94
AsyncCommunicator::~AsyncCommunicator() {
  running_ = false;
  if (main_thread_) main_thread_->join();
}

void AsyncCommunicator::SendGlobalStep(int batches) {
  if (!need_global_step_) {
    return;
T
tangwei12 已提交
95 96
  }

97 98
  if (batches == 0) {
    return;
T
tangwei12 已提交
99 100
  }

101 102 103 104 105
  auto &var_name = STEP_COUNTER;
  auto *out_var = send_scope_->Var(var_name);
  auto *out_t = out_var->GetMutable<framework::LoDTensor>();
  auto *data = out_t->mutable_data<int64_t>({1}, platform::CPUPlace());
  data[0] = static_cast<int64_t>(batches);
T
tangwei12 已提交
106

107 108 109
  auto &ctx = send_varname_to_ctx_.at(var_name);
  auto send_functor = distributed::ParameterSend<float>();
  send_functor(ctx, *send_scope_, true, 1);
Q
Qiao Longfei 已提交
110 111
}

112
void AsyncCommunicator::SendByCommunicator() {
113 114 115
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(send_varname_to_ctx_.size());
  VLOG(3) << "run send graph";
116

117 118 119 120 121
  auto before_run_send_graph = GetCurrentUS();
  for (auto &iter : send_varname_to_queue_) {
    auto &var_name = iter.first;
    auto &var_queue = iter.second;

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    auto send_task = [this, &var_name, &var_queue] {
      VLOG(3) << var_name << " merge and send; ";
      std::vector<std::shared_ptr<Variable>> vars;

      int merged_var_num = 0;
      int wait_times = 0;
      while (merged_var_num < max_merge_var_num_) {
        if (var_queue->Size() == 0) {
          VLOG(4) << "wait_times -> " << wait_times;
          if (wait_times >= send_wait_times_) {
            break;
          }
          std::this_thread::sleep_for(std::chrono::milliseconds(10));
          wait_times++;
          continue;
        } else {
          wait_times = 0;

          vars.push_back(var_queue->Pop());
          merged_var_num++;
        }
      }
      auto before_merge = GetCurrentUS();
145
      if (var_name == STEP_COUNTER) {
146 147 148 149
        SendGlobalStep(merged_var_num);
        auto after_merge = GetCurrentUS();
        VLOG(3) << "merge and send " << merged_var_num << " " << var_name
                << " use time " << after_merge - before_merge;
150
        return;
Q
Qiao Longfei 已提交
151
      }
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
      auto &ctx = send_varname_to_ctx_.at(var_name);

      MergeVars<float>(var_name, vars, send_scope_.get(), ctx.merge_add);
      auto after_merge = GetCurrentUS();
      VLOG(3) << "merge " << merged_var_num << " " << var_name << " use time "
              << after_merge - before_merge;

      auto send_functor = distributed::ParameterSend<float>();
      send_functor(ctx, *send_scope_, true, 1);
      auto after_send = GetCurrentUS();
      VLOG(3) << "send " << var_name << " use time "
              << after_send - after_merge;
    };
    task_futures.emplace_back(send_threadpool_->enqueue(std::move(send_task)));
  }
  for (auto &task_f : task_futures) {
    task_f.wait();
  }
  auto after_run_send_graph = GetCurrentUS();

  VLOG(3) << "run send graph use time "
          << (after_run_send_graph - before_run_send_graph);
}

void HalfAsyncCommunicator::SendByCommunicator() {
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(send_varname_to_ctx_.size());
  VLOG(3) << "run send graph";

  int batches = BatchesCounter();
  if (batches <= 0) return;

  auto before_run_send_graph = GetCurrentUS();
  for (auto &iter : send_varname_to_queue_) {
    auto &var_name = iter.first;
    auto &var_queue = iter.second;

    auto send_task = [this, batches, &var_name, &var_queue] {
      VLOG(3) << var_name << " merge and send; ";
      auto before_task = GetCurrentUS();
193 194
      std::vector<std::shared_ptr<Variable>> vars;
      vars.reserve(batches);
Q
Qiao Longfei 已提交
195

196 197 198 199
      for (int i = 0; i < batches; ++i) {
        vars.push_back(var_queue->Pop());
      }

200 201 202 203 204 205 206 207
      if (var_name == STEP_COUNTER) {
        SendGlobalStep(batches);
        auto end_task = GetCurrentUS();
        VLOG(3) << "merge " << batches << " " << var_name << " use time "
                << end_task - before_task;
        return;
      }

208 209 210 211 212 213 214 215 216 217 218 219
      auto &ctx = send_varname_to_ctx_.at(var_name);

      auto before_merge = GetCurrentUS();
      MergeVars<float>(var_name, vars, send_scope_.get(), ctx.merge_add);
      auto after_merge = GetCurrentUS();
      VLOG(3) << "merge " << batches << " " << var_name << " use time "
              << after_merge - before_merge;

      auto send_functor = distributed::ParameterSend<float>();
      send_functor(ctx, *send_scope_, true, 1);
      auto after_send = GetCurrentUS();
      VLOG(3) << "send " << var_name << " use time "
220 221 222 223 224 225 226 227 228 229 230 231 232 233
              << after_send - before_task;

      if (var_name.rfind("@GRAD") != var_name.size() - 5) return;

      auto recv_param = var_name.substr(0, var_name.size() - 5);
      if (recv_varname_to_ctx_.find(recv_param) == recv_varname_to_ctx_.end())
        return;

      auto recv_functor = distributed::ParameterRecv<float>();
      recv_functor(recv_varname_to_ctx_.at(recv_param), *recv_scope_);
      auto after_recv = GetCurrentUS();
      VLOG(3) << "recv " << recv_param << " use time "
              << after_recv - after_send;
      return;
234 235
    };
    task_futures.emplace_back(send_threadpool_->enqueue(std::move(send_task)));
Q
Qiao Longfei 已提交
236
  }
237 238 239 240 241 242
  for (auto &task_f : task_futures) {
    task_f.wait();
  }
  auto after_run_send_graph = GetCurrentUS();

  VLOG(3) << "run send graph use time "
243
          << (after_run_send_graph - before_run_send_graph);
Q
Qiao Longfei 已提交
244 245
}

246 247 248 249 250 251
void AsyncCommunicator::MainThread() {
  VLOG(3) << "MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
252 253
  }

254
  while (running_) {
255 256 257 258 259 260 261 262 263 264 265 266
    SendByCommunicator();
    BarrierSend();
  }
  VLOG(3) << "communicator stopped, send thread exit";
}

void HalfAsyncCommunicator::MainThread() {
  VLOG(3) << "MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
267
  }
268 269 270 271 272 273 274 275 276

  while (running_) {
    SendByCommunicator();
    BarrierSend();
    RecvByCommunicator();
    BarrierRecv();
    BarrierWeakUp();
  }
  VLOG(3) << "communicator stopped, send thread exit";
277 278
}

279
void AsyncCommunicator::RecvByCommunicator() {
T
tangwei12 已提交
280 281
  VLOG(3) << "parallel run recv graph";
  if (!running_) return;
282 283 284 285 286
  RecvNoBarrier();
  VLOG(3) << "run recv graph use time";
}

void AsyncCommunicator::RecvNoBarrier() {
T
tangwei12 已提交
287 288
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(recv_varname_to_ctx_.size());
289

T
tangwei12 已提交
290 291
  for (auto &iter : recv_varname_to_ctx_) {
    auto recv_task = [this, &iter] {
292
      auto before_task = GetCurrentUS();
T
tangwei12 已提交
293 294
      auto &var_name = iter.first;
      auto recv_functor = distributed::ParameterRecv<float>();
T
tangwei12 已提交
295
      recv_functor(iter.second, *recv_scope_);
296 297 298
      auto end_task = GetCurrentUS();
      VLOG(1) << "recv var " << var_name << " use time "
              << (end_task - before_task);
T
tangwei12 已提交
299 300 301
    };
    task_futures.emplace_back(recv_threadpool_->enqueue(std::move(recv_task)));
  }
302

T
tangwei12 已提交
303 304 305
  for (auto &task : task_futures) {
    task.wait();
  }
306 307
}

T
tangwei12 已提交
308
void AsyncCommunicator::Start() {
309
  VLOG(3) << "Communicator start";
310 311 312
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
313
    VLOG(3) << "start send thread and recv thread";
314
    waiting_ = true;
315
    running_ = true;
316
    BarrierTriggerReset(max_merge_var_num_);
317
    // start send and recv thread
318 319
    main_thread_.reset(
        new std::thread(std::bind(&AsyncCommunicator::MainThread, this)));
320 321 322
  }
}

T
tangwei12 已提交
323
void AsyncCommunicator::Stop() {
324
  VLOG(3) << "Communicator stop";
325 326 327 328
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
329
    if (main_thread_) {
330
      VLOG(3) << "stop send thread";
331 332
      main_thread_->join();
      main_thread_.reset(nullptr);
333
    }
Q
Qiao Longfei 已提交
334
  }
335
  VLOG(3) << "Communicator stop done";
Q
Qiao Longfei 已提交
336 337
}

338 339 340
void AsyncCommunicator::Send(const std::vector<std::string> &var_names,
                             const std::vector<std::string> &var_tables,
                             const framework::Scope &scope) {
341 342
  waiting_ = false;

343
  PADDLE_ENFORCE_EQ(
344 345 346 347
      var_tables.size(), 1,
      platform::errors::InvalidArgument("var_tables.size() == 1 is permitted"));

  auto table_name = var_tables[0];
348 349 350 351

  if (table_name == STEP_COUNTER && !need_global_step_) return;

  auto before_send_op = GetCurrentUS();
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  auto &queue = send_varname_to_queue_.at(table_name);

  if (table_name == STEP_COUNTER) {
    auto tmp_var = std::make_shared<Variable>();
    auto *tensor = tmp_var->GetMutable<framework::LoDTensor>();
    tensor->Resize(framework::make_ddim({1}));
    auto *out_d = tensor->mutable_data<int64_t>(platform::CPUPlace());
    out_d[0] = 1;
    queue->Push(tmp_var);
  } else {
    PADDLE_ENFORCE_GE(var_names.size(), 1,
                      platform::errors::InvalidArgument(
                          "var_names.size() >= 1 is permitted"));

    auto *var = scope.FindVar(var_names[0]);

    PADDLE_ENFORCE_EQ(
        var->IsInitialized(), true,
        platform::errors::InvalidArgument("grad var should be inited"));

    auto tmp_var = std::make_shared<Variable>();
    if (var->IsType<framework::SelectedRows>()) {
      framework::CopyVariable(*var, tmp_var.get());
      queue->Push(tmp_var);
    } else if (var->IsType<framework::LoDTensor>()) {
      // push var into send queue by var_name
      auto var_name = var_names[0];
      framework::CopyVariable(*var, tmp_var.get());
      queue->Push(tmp_var);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "unknown var type to copy, only support LoDTensor/SelectedRows"));
    }
  }
386 387 388
  auto after_send_op = GetCurrentUS();
  VLOG(3) << "send to " << table_name << " with queue size " << queue->Size()
          << ", use time " << (after_send_op - before_send_op);
389
}
390

391 392 393 394
void HalfAsyncCommunicator::Clean() {
  for (auto &iter : send_varname_to_queue_) {
    auto &var_name = iter.first;
    auto &var_queue = iter.second;
395

396 397
    while (var_queue->Size() > 0) {
      var_queue->Pop();
398 399
    }

400 401 402 403
    VLOG(3) << "clean var: " << var_name << " done";
  }
}

T
tangwei12 已提交
404
int HalfAsyncCommunicator::BatchesCounter() {
405 406 407 408 409 410
  while (running_) {
    if (barrier_counter_.load() >= barrier_trigger_.load() &&
        barrier_trigger_.load() != 0) {
      break;
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
411
    }
412
  }
413

414 415
  return barrier_counter_.load();
}
C
Chengmo 已提交
416

417 418
void HalfAsyncCommunicator::Barrier() {
  barrier_counter_++;
419

420 421 422
  if (!running_) {
    VLOG(3) << "Communicator is not running, release barrier";
    return;
423 424
  }

425 426 427
  {
    std::unique_lock<std::mutex> lk(barrier_mutex_);
    barrier_cond_.wait(lk, [this] { return (barrier_counter_ == 0); });
428
  }
429
}
430

431 432 433 434
void HalfAsyncCommunicator::BarrierTriggerDecrement() {
  barrier_trigger_--;
  VLOG(3) << "BarrierTriggerDecrement decrement barrier trigger to "
          << barrier_trigger_.load();
435 436
}

437 438 439 440 441
void HalfAsyncCommunicator::BarrierTriggerReset(int initial_val) {
  barrier_trigger_.store(initial_val);

  VLOG(3) << "BarrierTriggerReset reset barrier trigger to "
          << barrier_trigger_.load();
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
void HalfAsyncCommunicator::BarrierWeakUp() {
  barrier_counter_.store(0);
  barrier_cond_.notify_all();
}

void SyncCommunicator::BarrierSend() {
  if (!running_) return;

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id_);

  std::vector<distributed::VarHandlePtr> rets;

  for (auto &ep : pserver_endpoints_) {
    rets.push_back(rpc_client->AsyncSendBatchBarrier(ep));
459
  }
460 461 462 463 464 465 466

  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::External(
                                               "internal error in RPCClient"));
  }

  VLOG(4) << "BarrierSend with SyncCommunicator";
467 468
}

469 470 471 472 473 474 475 476 477
void SyncCommunicator::BarrierRecv() {
  if (!running_) return;

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id_);

  std::vector<distributed::VarHandlePtr> rets;
  for (auto &ep : pserver_endpoints_) {
    rets.push_back(rpc_client->AsyncSendFetchBarrier(ep));
478 479
  }

480 481 482
  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::External(
                                               "internal error in RPCClient"));
483
  }
484 485

  VLOG(4) << "BarrierRecv with SyncCommunicator";
486 487
}

488 489 490 491 492 493
void GeoCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                               const RpcCtxMap &recv_varname_to_ctx,
                               Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);
494

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
  PADDLE_ENFORCE_GT(
      send_varname_to_ctx.size(), 0,
      platform::errors::InvalidArgument("send var contexts can not be zero"));

  send_scope_.reset(new Scope());
  for (auto &iter : send_varname_to_ctx_) {
    auto &varname = iter.first;

    if (varname == STEP_COUNTER) {
      send_varname_to_queue_[varname] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
              send_queue_size_);
    } else {
      auto &send_ctx = iter.second;

510
      send_var_nums_ += send_ctx.splited_varnames.size();
511
      if (!send_ctx.is_sparse) {
C
Chengmo 已提交
512
        continue;
513
      }
514 515 516 517 518 519 520 521 522 523
      int pserver_num = static_cast<int>(send_ctx.epmap.size());
      for (int ep_idx = 0; ep_idx < pserver_num; ep_idx++) {
        sparse_id_queues_.insert(
            std::pair<std::string, std::shared_ptr<BlockingQueue<
                                       std::shared_ptr<std::vector<int64_t>>>>>(
                send_ctx.splited_varnames[ep_idx],
                std::make_shared<
                    BlockingQueue<std::shared_ptr<std::vector<int64_t>>>>(
                    send_queue_size_)));
      }
524 525
    }
  }
526
  send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
527

528 529 530 531
  if (recv_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be received, will not start recv_thread";
  } else {
    recv_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
532 533
  }

534 535 536
  delta_scope_.reset(new Scope());
  old_scope_.reset(new Scope());
  pserver_scope_.reset(new Scope());
537

T
tangwei12 已提交
538
  InitParams();
539 540
}

541 542 543 544
void GeoCommunicator::Send(const std::vector<std::string> &var_names,
                           const std::vector<std::string> &var_tables,
                           const framework::Scope &scope) {
  waiting_ = false;
545 546 547
  PADDLE_ENFORCE_EQ(
      var_tables.size(), 1,
      platform::errors::InvalidArgument("var_tables.size() == 1 is permitted"));
548

549 550
  auto table_name = var_tables[0];
  if (table_name == STEP_COUNTER) return;
551

552 553 554
  auto before_send = GetCurrentUS();
  size_t splited_var_nums =
      send_varname_to_ctx_[table_name].splited_varnames.size();
555

556
  std::unordered_map<std::string, std::unordered_set<int64_t>> ids_table;
557

558 559 560 561 562 563 564 565 566 567 568 569 570
  for (size_t j = 0; j < splited_var_nums; j++) {
    ids_table.insert(std::pair<std::string, std::unordered_set<int64_t>>(
        send_varname_to_ctx_[table_name].splited_varnames[j],
        std::unordered_set<int64_t>()));
  }
  auto *var = scope.FindVar(var_names[0]);
  auto &rows = var->Get<framework::SelectedRows>().rows();

  // insert ids which has not been record
  for (size_t j = 0; j < rows.size(); j++) {
    auto ep_idx = rows[j] % splited_var_nums;
    ids_table.at(send_varname_to_ctx_[table_name].splited_varnames[ep_idx])
        .insert(rows[j]);
571
  }
572

573 574 575 576 577 578 579 580 581 582 583
  auto before_push = GetCurrentUS();
  for (auto &iter : ids_table) {
    auto &key = iter.first;
    auto &sparse_ids_set = iter.second;
    auto sparse_ids_vec = std::make_shared<std::vector<int64_t>>();
    sparse_ids_vec->assign(sparse_ids_set.begin(), sparse_ids_set.end());
    sparse_id_queues_.at(key)->Push(sparse_ids_vec);
    VLOG(3) << "push " << sparse_ids_vec->size() << " ids to " << key
            << "'s queue";
  }
  auto after_send = GetCurrentUS();
584 585
  VLOG(3) << "run send " << table_name << " op finish. using "
          << (before_push - before_send) << "; " << (after_send - before_push);
586 587
}

588 589
void GeoCommunicator::MainThread() {
  VLOG(3) << "MainThread start and wait";
590

591 592 593 594
  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }
C
Chengmo 已提交
595

596 597 598
  while (running_) {
    std::vector<std::future<void>> tasks;
    tasks.reserve(send_var_nums_);
C
Chengmo 已提交
599

600 601 602 603
    for (auto &iter : send_varname_to_ctx_) {
      auto &var_name = iter.first;
      auto &send_ctx = iter.second;
      int pserver_num = static_cast<int>(send_ctx.epmap.size());
604
      if (send_ctx.is_sparse) {
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
        for (int ep_idx = 0; ep_idx < pserver_num; ep_idx++) {
          auto send_recv_task = [this, ep_idx, &var_name] {
            auto before_send_sparse = GetCurrentUS();
            if (var_name == STEP_COUNTER) {
              return;
            }
            auto send_varname =
                send_varname_to_ctx_.at(var_name).splited_varnames[ep_idx];
            auto sparse_ids = MergeSparseIds(send_varname);
            if (sparse_ids.size() == 0) {
              return;
            }
            SendSparse(var_name, ep_idx, sparse_ids);
            auto after_send_sparse = GetCurrentUS();
            RecvSparse(var_name, ep_idx);
            auto after_recv_sparse = GetCurrentUS();
            VLOG(3)
                << "send recv "
                << send_varname_to_ctx_.at(var_name).splited_varnames[ep_idx]
                << " finish, using " << (after_send_sparse - before_send_sparse)
                << " and " << (after_recv_sparse - after_send_sparse)
                << "; total = " << (after_recv_sparse - before_send_sparse);
          };
          tasks.emplace_back(
              send_threadpool_->enqueue(std::move(send_recv_task)));
        }
631
      } else {
632 633 634 635 636 637 638 639 640
        auto send_recv_task = [this, &var_name, &send_ctx] {
          if (var_name == STEP_COUNTER) {
            return;
          }
          SendDense(var_name);
          RecvDense(var_name);
        };
        tasks.emplace_back(
            send_threadpool_->enqueue(std::move(send_recv_task)));
641
      }
642 643 644 645
    }
    for (auto &task : tasks) {
      task.wait();
    }
646 647
  }
}
C
Chengmo 已提交
648

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
std::vector<int64_t> GeoCommunicator::MergeSparseIds(
    const std::string &send_varname) {
  size_t merge_num = 0, wait_times = 0;
  std::unordered_set<int64_t> sparse_ids;
  while (merge_num < static_cast<size_t>(max_merge_var_num_)) {
    VLOG(3) << "Merge Number of " << send_varname << " = " << merge_num;
    if (sparse_id_queues_.at(send_varname)->Size() > 0) {
      wait_times = 0;
      std::shared_ptr<std::vector<int64_t>> pop_ids =
          sparse_id_queues_.at(send_varname)->Pop();
      for (size_t j = 0; j < pop_ids->size(); j++) {
        sparse_ids.insert(pop_ids->at(j));
      }
      merge_num += 1;
      VLOG(3) << "sparse_id_queues_(" << send_varname << ") pushed";
    } else if (sparse_id_queues_.at(send_varname)->Size() == 0) {
      VLOG(3) << "wait_times -> " << wait_times;
      if (wait_times >= static_cast<size_t>(send_wait_times_)) {
        break;
      }
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
      wait_times++;
      continue;
    }
673
  }
674 675 676 677 678 679 680 681 682 683 684
  std::vector<int64_t> res;
  res.assign(sparse_ids.begin(), sparse_ids.end());
  return res;
}
void GeoCommunicator::SendSparse(const std::string &varname, int ep_idx,
                                 const std::vector<int64_t> &sparse_ids) {
  auto &rpc_ctx = send_varname_to_ctx_.at(varname);
  auto send_varname = rpc_ctx.splited_varnames[ep_idx];
  auto trainer_id = rpc_ctx.trainer_id;
  auto endpoint = rpc_ctx.epmap[ep_idx];
  auto pserver_num = rpc_ctx.epmap.size();
685

686 687 688 689 690 691 692 693
  auto *var_latest = recv_scope_->FindVar(varname);

  PADDLE_ENFORCE_EQ(var_latest->IsInitialized(), true,
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", varname));
  auto &t_latest = var_latest->Get<framework::LoDTensor>();

  auto dims1 = t_latest.dims()[1];
C
Chengmo 已提交
694 695

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
696
  auto *var_delta = delta_scope_->Var(send_varname);
697
  auto *t_delta = var_delta->GetMutable<framework::SelectedRows>();
698

699 700
  auto *t_value = t_delta->mutable_value();
  t_value->mutable_data<float>(
701
      framework::make_ddim({static_cast<int64_t>(sparse_ids.size()), dims1}),
702
      cpu_ctx.GetPlace());
C
Chengmo 已提交
703

704 705
  std::vector<std::vector<std::vector<float> *>> values;
  auto *ins = distributed::LargeScaleKV::GetInstance();
706
  ins->Get(varname)->Get(sparse_ids, {"Param"}, &values);
C
Chengmo 已提交
707

708 709
  auto blas = math::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
  float coefficient = 1.0 / static_cast<float>(trainers_);
C
Chengmo 已提交
710

711 712
  for (auto j = 0; j < static_cast<int>(sparse_ids.size()); ++j) {
    blas.VSUB(dims1, t_latest.data<float>() + sparse_ids[j] * dims1,
713 714 715 716
              values[j][0]->data(), t_value->data<float>() + j * dims1);
    blas.SCAL(dims1, coefficient, t_value->data<float>() + j * dims1);
    blas.VADD(dims1, values[j][0]->data(), t_value->data<float>() + j * dims1,
              values[j][0]->data());
C
Chengmo 已提交
717 718
  }

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
  std::vector<int64_t> send_rows;
  send_rows.reserve(sparse_ids.size());
  for (auto idx : sparse_ids) {
    send_rows.push_back(idx / pserver_num);
  }
  t_delta->set_height(rpc_ctx.height_sections[ep_idx]);
  t_delta->set_rows(send_rows);

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx_send = *pool.Get(platform::CPUPlace());
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id);

  auto ret = rpc_client->AsyncSendVar(endpoint, cpu_ctx_send,
                                      *delta_scope_.get(), send_varname);
  ret->Wait();
735 736
}

737 738 739
void GeoCommunicator::SendDense(const std::string &varname) {
  auto *var_latest = recv_scope_->FindVar(varname);
  auto *var_timestamp = old_scope_->FindVar(varname);
740

741 742 743 744 745 746
  PADDLE_ENFORCE_EQ(var_latest->IsInitialized(), true,
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", varname));
  PADDLE_ENFORCE_EQ(var_timestamp->IsInitialized(), true,
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", varname));
747

748 749
  auto &t_latest = var_latest->Get<framework::LoDTensor>();
  auto t_timestamp = var_timestamp->GetMutable<framework::LoDTensor>();
C
Chengmo 已提交
750

751 752 753 754
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto *var_delta = delta_scope_->Var(varname);
  auto *t_delta = var_delta->GetMutable<framework::LoDTensor>();
  t_delta->mutable_data<float>(t_latest.dims(), cpu_ctx.GetPlace());
C
Chengmo 已提交
755

756 757 758
  auto blas = math::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
  blas.VSUB(t_latest.numel(), t_latest.data<float>(),
            t_timestamp->data<float>(), t_delta->data<float>());
C
Chengmo 已提交
759

760 761
  float coefficient = 1.0 / static_cast<float>(trainers_);
  blas.SCAL(t_latest.numel(), coefficient, t_delta->data<float>());
C
Chengmo 已提交
762

763 764
  blas.VADD(t_latest.numel(), t_timestamp->data<float>(),
            t_delta->data<float>(), t_timestamp->data<float>());
765

766 767 768 769
  auto &ctx = send_varname_to_ctx_.at(varname);
  auto send = distributed::ParameterSend<float>();
  send(ctx, *delta_scope_, true, 1);
}
770

771
void GeoCommunicator::RecvByCommunicator() { return; }
772

773 774 775 776 777 778
void GeoCommunicator::RecvSparse(const std::string &varname, int ep_idx) {
  auto train_id = recv_varname_to_ctx_.at(varname).trainer_id;
  auto endpoint = recv_varname_to_ctx_.at(varname).epmap[ep_idx];
  auto splited_var_name =
      recv_varname_to_ctx_.at(varname).splited_varnames[ep_idx];
  auto pserver_num = recv_varname_to_ctx_.at(varname).epmap.size();
779

780 781 782 783
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx_recv = *pool.Get(platform::CPUPlace());
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(train_id);
784

785 786 787 788 789
  auto *var_psrever = pserver_scope_->Var(splited_var_name);
  auto handle = rpc_client->AsyncGetVar(endpoint, cpu_ctx_recv,
                                        *pserver_scope_.get(), splited_var_name,
                                        splited_var_name, splited_var_name);
  handle->Wait();
790

791
  auto *var_latest = recv_scope_->FindVar(varname);
792

793 794 795 796
  PADDLE_ENFORCE_EQ(
      var_psrever->IsInitialized(), true,
      platform::errors::Unavailable(
          "%s in pserver scope is not initialized, please check", varname));
797

798 799 800
  std::vector<int64_t> ids;
  ids.assign(var_psrever->Get<framework::SelectedRows>().rows().begin(),
             var_psrever->Get<framework::SelectedRows>().rows().end());
801

802 803 804 805 806
  for (size_t j = 0; j < ids.size(); j++) {
    ids[j] = ids[j] * pserver_num + ep_idx;
  }

  VLOG(3) << "RecvSparse receive var: " << splited_var_name
807
          << " ids Size: " << ids.size();
808

809
  auto t_psrever = var_psrever->Get<framework::SelectedRows>().value();
810

811
  std::vector<std::vector<std::vector<float> *>> old_values;
812

813 814
  auto *ins = distributed::LargeScaleKV::GetInstance();
  ins->Get(varname)->Get(ids, {"Param"}, &old_values);
815

816
  auto *t_latest = var_latest->GetMutable<framework::LoDTensor>();
817

818 819
  auto dims1 = t_latest->dims()[1];
  auto numel = ids.size() * dims1;
820

821 822 823 824 825 826 827 828 829 830 831 832 833 834
  std::vector<float> v_delta;
  v_delta.resize(numel);

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);

  for (auto j = 0; j < static_cast<int>(ids.size()); ++j) {
    blas.VSUB(dims1, t_psrever.data<float>() + j * dims1,
              old_values[j][0]->data(), v_delta.data() + j * dims1);
    blas.VADD(dims1, t_latest->data<float>() + ids[j] * dims1,
              v_delta.data() + j * dims1,
              t_latest->data<float>() + ids[j] * dims1);
    blas.VCOPY(dims1, t_psrever.data<float>() + j * dims1,
               old_values[j][0]->data());
835 836 837
  }
}

838 839 840 841
void GeoCommunicator::RecvDense(const std::string &varname) {
  auto *var_latest = recv_scope_->FindVar(varname);
  auto *var_timestamp = old_scope_->FindVar(varname);
  auto *var_psrever = pserver_scope_->Var(varname);
842

843 844
  auto &ctx = recv_varname_to_ctx_.at(varname);
  auto recv = distributed::ParameterRecv<float>();
T
tangwei12 已提交
845
  recv(ctx, *pserver_scope_);
846

847 848 849 850
  PADDLE_ENFORCE_EQ(
      var_psrever->IsInitialized(), true,
      platform::errors::Unavailable(
          "%s in pserver scope is not initialized, please check", varname));
851

852 853 854
  auto t_psrever = var_psrever->Get<framework::LoDTensor>();
  auto t_latest = var_latest->GetMutable<framework::LoDTensor>();
  auto t_timestamp = var_timestamp->GetMutable<framework::LoDTensor>();
855

856 857 858 859
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto *var_delta = delta_scope_->Var(varname);
  auto *t_delta = var_delta->GetMutable<framework::LoDTensor>();
  t_delta->mutable_data<float>(t_latest->dims(), cpu_ctx.GetPlace());
860

861 862 863 864 865 866 867
  auto blas = math::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
  blas.VSUB(t_latest->numel(), t_psrever.data<float>(),
            t_timestamp->data<float>(), t_delta->data<float>());
  blas.VADD(t_latest->numel(), t_latest->data<float>(), t_delta->data<float>(),
            t_latest->data<float>());
  blas.VCOPY(t_latest->numel(), t_psrever.data<float>(),
             t_timestamp->data<float>());
868 869
}

T
tangwei12 已提交
870
void GeoCommunicator::InitParams() {
871 872
  std::vector<std::future<void>> tasks;
  tasks.reserve(recv_varname_to_ctx_.size());
873

874 875 876
  for (auto &iter : recv_varname_to_ctx_) {
    auto &var_name = iter.first;
    auto &recv_ctx = iter.second;
877

878 879 880 881 882 883
    auto recv_task = [this, &var_name, &recv_ctx] {
      if (!recv_ctx.is_sparse) {
        InitDense(var_name);
      }
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(recv_task)));
884 885
  }

886 887
  for (auto &task : tasks) {
    task.wait();
888
  }
889
  InitSparse();
890
}
891

892 893 894
void GeoCommunicator::InitDense(const std::string varname) {
  auto &ctx = recv_varname_to_ctx_.at(varname);
  auto recv = distributed::ParameterRecv<float>();
T
tangwei12 已提交
895 896 897 898 899 900 901 902 903
  recv(ctx, *recv_scope_);

  auto *global_var = recv_scope_->FindVar(varname);
  global_var->GetMutable<framework::LoDTensor>();

  auto *old_var = old_scope_->Var(varname);
  old_var->GetMutable<framework::LoDTensor>();

  framework::CopyVariable(*global_var, old_var);
904 905
  VLOG(1) << "init dense variable " << varname << " done";
}
T
tangwei12 已提交
906

907 908
void GeoCommunicator::InitSparse() {
  auto sparse_metas = string::split_string<std::string>(sparse_attrs_, "#");
T
tangwei12 已提交
909

910 911
  std::vector<distributed::SparseMeta> metas;
  std::vector<int64_t> dicts;
T
tangwei12 已提交
912

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
  for (auto &sparse_meta : sparse_metas) {
    auto attrs = string::split_string<std::string>(sparse_meta, ":");

    auto meta = distributed::SparseMeta();
    meta.name = attrs[0];
    meta.value_names = {"Param"};

    auto dic = string::split_string<std::string>(attrs[1], ",");
    dicts.push_back(std::stoi(dic[0]));
    meta.value_dims = {std::stoi(dic[1])};
    meta.mode = distributed::Mode::training;
    meta.grad_name = "none";
    meta.cached_varnames = {};
    meta.initializer_attrs = string::split_string<std::string>(attrs[2]);
    meta.entry = "none";

    VLOG(3) << "add sparse meta: " << meta.ToString();
    metas.push_back(meta);
T
tangwei12 已提交
931 932
  }

933
  LargeScaleKV::Init(metas);
T
tangwei12 已提交
934

T
tangwei12 已提交
935 936 937
  for (auto &meta : metas) {
    auto &ctx = recv_varname_to_ctx_.at(meta.name);
    auto recv = distributed::ParameterRecv<float>();
T
tangwei12 已提交
938

T
tangwei12 已提交
939 940 941 942
    auto *global_var = recv_scope_->FindVar(meta.name);
    auto global_value = global_var->Get<framework::LoDTensor>();
    auto rows = global_value.dims()[0];
    auto dim1 = global_value.dims()[1];
T
tangwei12 已提交
943

T
tangwei12 已提交
944 945 946 947 948 949 950 951 952 953 954 955
    recv(ctx, *recv_scope_);
    VLOG(1) << "recv " << meta.name << " with global scope for init";

    auto n_rows = global_var->Get<framework::LoDTensor>().dims()[0];

    PADDLE_ENFORCE_EQ(
        rows, n_rows,
        platform::errors::InvalidArgument(
            "global var: %s origin dim must equal recved rows", meta.name));

    std::vector<int64_t> ids(rows);
    std::iota(ids.begin(), ids.end(), 0);
T
tangwei12 已提交
956

957
    auto *ins = distributed::LargeScaleKV::GetInstance();
T
tangwei12 已提交
958 959 960 961
    std::vector<std::vector<std::vector<float> *>> values;

    ins->Get(meta.name)->Init(ids);
    ins->Get(meta.name)->Get(ids, {"Param"}, &values);
962

T
tangwei12 已提交
963 964 965 966 967 968 969
    auto blas = math::GetBlas<platform::CPUDeviceContext, float>(
        paddle::platform::CPUDeviceContext());

    for (auto &id : ids) {
      blas.VCOPY(dim1, global_value.data<float>() + id * dim1,
                 values[id][0]->data());
    }
T
tangwei12 已提交
970 971
  }

972
  VLOG(3) << "init sparse variable done";
T
tangwei12 已提交
973 974
}

Q
Qiao Longfei 已提交
975 976 977
}  // namespace distributed
}  // namespace operators
}  // namespace paddle