Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
23d3929a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
23d3929a
编写于
3月 12, 2019
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize merge vars
上级
d3a14377
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
63 addition
and
22 deletion
+63
-22
paddle/fluid/operators/distributed/communicator.cc
paddle/fluid/operators/distributed/communicator.cc
+63
-22
未找到文件。
paddle/fluid/operators/distributed/communicator.cc
浏览文件 @
23d3929a
...
...
@@ -18,12 +18,15 @@ limitations under the License. */
#include <chrono> // NOLINT
#include <thread> // NOLINT
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/operators/distributed/parameter_send.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/device_context.h"
DEFINE_bool
(
communicator_independent_recv_thread
,
true
,
"use an independent to recv vars from parameter server"
);
...
...
@@ -40,28 +43,54 @@ namespace paddle {
namespace
operators
{
namespace
distributed
{
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
inline
double
GetCurrentUS
()
{
struct
timeval
time
;
gettimeofday
(
&
time
,
NULL
);
return
1e+6
*
time
.
tv_sec
+
time
.
tv_usec
;
}
static
inline
void
MergeVars
(
const
std
::
string
&
var_name
,
const
std
::
vector
<
std
::
shared_ptr
<
Variable
>>
&
vars
,
Scope
*
scope
)
{
VLOG
(
3
)
<<
"merge "
<<
vars
.
size
()
<<
" vars "
<<
var_name
<<
" to 1"
;
PADDLE_ENFORCE
(
!
vars
.
empty
(),
"should have value to merge!"
);
auto
cpu_place
=
platform
::
CPUPlace
();
auto
&
var0
=
vars
[
0
];
auto
*
out_var
=
scope
->
Var
(
var_name
);
if
(
var0
->
IsType
<
framework
::
LoDTensor
>
())
{
VLOG
(
3
)
<<
"merge "
<<
var_name
<<
" LoDTensor"
<<
var0
->
Get
<
framework
::
LoDTensor
>
().
dims
();
// init output tensor
auto
*
out_t
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
out_ptr
=
out_t
->
mutable_data
<
float
>
(
var0
->
Get
<
framework
::
LoDTensor
>
().
dims
(),
cpu_place
);
auto
numel
=
out_t
->
numel
();
for
(
auto
i
=
0
;
i
<
numel
;
++
i
)
{
out_ptr
[
i
]
=
0
;
for
(
auto
&
var
:
vars
)
{
auto
&
var_t
=
var
->
Get
<
framework
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
var_t
.
numel
(),
numel
,
"should have the same dims"
);
out_ptr
[
i
]
+=
var_t
.
data
<
float
>
()[
i
];
}
// check the input dims
for
(
auto
&
var
:
vars
)
{
auto
&
var_t
=
var
->
Get
<
framework
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
var_t
.
numel
(),
numel
,
"should have the same dims"
);
}
// set output tensor to 0.
auto
cpu_ctx
=
paddle
::
platform
::
CPUDeviceContext
();
math
::
SetConstant
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
constant_functor
;
constant_functor
(
cpu_ctx
,
out_t
,
static_cast
<
float
>
(
0
));
// sum all vars to out
auto
result
=
EigenVector
<
T
>::
Flatten
(
*
out_t
);
for
(
auto
&
var
:
vars
)
{
auto
&
in_t
=
var
->
Get
<
framework
::
LoDTensor
>
();
auto
in
=
EigenVector
<
float
>::
Flatten
(
in_t
);
result
.
device
(
*
cpu_ctx
.
eigen_device
())
=
result
+
in
;
}
}
else
if
(
var0
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
slr0
=
var0
->
Get
<
framework
::
SelectedRows
>
();
auto
*
out_slr
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
out_slr
->
mutable_rows
()
->
clear
();
out_slr
->
mutable_value
()
->
mutable_data
<
float
>
({{}},
cpu_place
);
...
...
@@ -74,6 +103,8 @@ static inline void MergeVars(const std::string &var_name,
merge_add
;
auto
dev_ctx
=
paddle
::
platform
::
CPUDeviceContext
();
merge_add
(
dev_ctx
,
inputs
,
out_slr
,
false
);
VLOG
(
3
)
<<
"merge "
<<
var_name
<<
" SelectedRows height: "
<<
slr0
.
height
()
<<
" dims: "
<<
slr0
.
value
().
dims
();
}
else
{
PADDLE_THROW
(
"unsupported var type!"
);
}
...
...
@@ -123,12 +154,13 @@ void Communicator::SendThread() {
std
::
vector
<
std
::
future
<
void
>>
task_futures
;
task_futures
.
reserve
(
send_varname_to_ctx_
.
size
());
VLOG
(
3
)
<<
"run send graph"
;
auto
before_run_send_graph
=
GetCurrentUS
();
for
(
auto
&
iter
:
send_varname_to_queue_
)
{
auto
&
var_name
=
iter
.
first
;
auto
&
var_queue
=
iter
.
second
;
if
(
var_queue
->
Size
()
>
0
)
{
auto
send_task
=
[
this
,
&
var_name
,
&
var_queue
]
{
VLOG
(
3
)
<<
"merge var "
<<
var_name
<<
"
and send"
;
VLOG
(
3
)
<<
var_name
<<
" merge
and send"
;
std
::
vector
<
std
::
shared_ptr
<
Variable
>>
vars
;
size_t
merged_var_num
=
0
;
while
(
var_queue
->
Size
()
>
0
&&
...
...
@@ -136,12 +168,19 @@ void Communicator::SendThread() {
vars
.
push_back
(
var_queue
->
Pop
());
merged_var_num
++
;
}
auto
before_merge
=
GetCurrentUS
();
MergeVars
(
var_name
,
vars
,
send_scope_
.
get
());
auto
after_merge
=
GetCurrentUS
();
VLOG
(
3
)
<<
"merge "
<<
var_name
<<
" use time "
<<
after_merge
-
before_merge
;
auto
send_functor
=
distributed
::
ParameterSend
<
float
>
();
auto
&
ctx
=
send_varname_to_ctx_
.
at
(
var_name
);
if
(
!
FLAGS_communicator_fake_rpc
)
{
send_functor
(
ctx
,
*
send_scope_
,
true
);
}
auto
after_send
=
GetCurrentUS
();
VLOG
(
3
)
<<
"send "
<<
var_name
<<
" use time "
<<
after_send
-
after_merge
;
};
task_futures
.
emplace_back
(
send_threadpool_
->
enqueue
(
std
::
move
(
send_task
)));
...
...
@@ -152,7 +191,9 @@ void Communicator::SendThread() {
for
(
auto
&
task_f
:
task_futures
)
{
task_f
.
wait
();
}
VLOG
(
3
)
<<
"run send graph done"
;
auto
after_run_send_graph
=
GetCurrentUS
();
VLOG
(
3
)
<<
"run send graph use time "
<<
after_run_send_graph
-
before_run_send_graph
;
if
(
!
FLAGS_communicator_independent_recv_thread
)
{
RecvAll
();
}
...
...
@@ -161,6 +202,7 @@ void Communicator::SendThread() {
void
Communicator
::
RecvAll
()
{
VLOG
(
3
)
<<
"parallel run recv graph"
;
auto
before_send
=
GetCurrentUS
();
std
::
vector
<
std
::
future
<
void
>>
task_futures
;
task_futures
.
reserve
(
recv_varname_to_ctx_
.
size
());
for
(
auto
&
iter
:
recv_varname_to_ctx_
)
{
...
...
@@ -177,7 +219,8 @@ void Communicator::RecvAll() {
for
(
auto
&
task
:
task_futures
)
{
task
.
wait
();
}
VLOG
(
3
)
<<
"run recv graph done"
;
auto
after_recv
=
GetCurrentUS
();
VLOG
(
3
)
<<
"run recv graph use time "
<<
after_recv
-
before_send
;
}
void
Communicator
::
RecvThread
()
{
...
...
@@ -191,17 +234,15 @@ void Communicator::RecvThread() {
void
Communicator
::
Send
(
const
std
::
string
&
var_name
,
const
framework
::
Scope
&
scope
)
{
if
(
!
FLAGS_communicator_fake_rpc
)
{
VLOG
(
3
)
<<
"communicator send "
<<
var_name
;
// push var into send queue by var_name
auto
*
grad_var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE
(
grad_var
->
IsInitialized
(),
"grad var should be inited"
);
auto
tmp_grad_var
=
std
::
make_shared
<
Variable
>
();
framework
::
CopyVariable
(
*
grad_var
,
tmp_grad_var
.
get
());
auto
&
queue
=
send_varname_to_queue_
.
at
(
var_name
);
VLOG
(
3
)
<<
"send "
<<
var_name
<<
" queue size "
<<
queue
->
Size
();
queue
->
Push
(
tmp_grad_var
);
}
VLOG
(
3
)
<<
"communicator send "
<<
var_name
;
// push var into send queue by var_name
auto
*
grad_var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE
(
grad_var
->
IsInitialized
(),
"grad var should be inited"
);
auto
tmp_grad_var
=
std
::
make_shared
<
Variable
>
();
framework
::
CopyVariable
(
*
grad_var
,
tmp_grad_var
.
get
());
auto
&
queue
=
send_varname_to_queue_
.
at
(
var_name
);
VLOG
(
3
)
<<
"send "
<<
var_name
<<
" queue size "
<<
queue
->
Size
();
queue
->
Push
(
tmp_grad_var
);
}
Communicator
*
Communicator
::
GetInstance
()
{
return
communicator_
.
get
();
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录