# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core import paddle.fluid as fluid from paddle.fluid import Program, program_guard class TestMeanOp(OpTest): def setUp(self): self.op_type = "mean" self.dtype = np.float32 self.init_dtype_type() self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)} self.outputs = {'Out': np.mean(self.inputs["X"])} def init_dtype_type(self): pass def test_check_output(self): self.check_output() def test_checkout_grad(self): self.check_grad(['X'], 'Out') class TestMeanOpError(OpTest): def test_errors(self): with program_guard(Program(), Program()): # The input type of mean_op must be Variable. input1 = 12 self.assertRaises(TypeError, fluid.layers.mean, input1) # The input dtype of mean_op must be float16, float32, float64. input2 = fluid.layers.data( name='input2', shape=[12, 10], dtype="int32") self.assertRaises(TypeError, fluid.layers.mean, input2) input3 = fluid.layers.data( name='input3', shape=[4], dtype="float16") fluid.layers.softmax(input3) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestFP16MeanOp(TestMeanOp): def init_dtype_type(self): self.dtype = np.float16 def test_check_output(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=2e-3) def test_checkout_grad(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ['X'], 'Out', max_relative_error=0.8) if __name__ == "__main__": unittest.main()