test_kthvalue_op.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16
19

20
import paddle
21
from paddle import fluid
22
from paddle.fluid import core
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44


def cal_kthvalue(x, k, axis, keepdim=False):
    if axis < 0:
        axis = len(x.shape) + axis
    indices = np.argsort(x, axis=axis)
    value = np.sort(x, axis=axis)
    indices = indices.take(indices=k - 1, axis=axis)
    value = value.take(indices=k - 1, axis=axis)
    if keepdim:
        indices = np.expand_dims(indices, axis)
        value = np.expand_dims(value, axis)
    return value, indices


class TestKthvalueOp(OpTest):
    def init_args(self):
        self.k = 5
        self.axis = -1

    def setUp(self):
        self.op_type = "kthvalue"
45
        self.python_api = paddle.kthvalue
46 47 48 49 50
        self.dtype = np.float64
        self.input_data = np.random.random((2, 1, 2, 4, 10))
        self.init_args()
        self.inputs = {'X': self.input_data}
        self.attrs = {'k': self.k, 'axis': self.axis}
51 52 53
        output, indices = cal_kthvalue(
            self.input_data, k=self.k, axis=self.axis
        )
54 55 56 57
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
W
wanghuancoder 已提交
58
        self.check_output()
59 60 61

    def test_check_grad(self):
        paddle.enable_static()
62
        self.check_grad({'X'}, 'Out')
63 64 65 66 67 68 69 70 71 72


class TestKthvalueOpWithKeepdim(OpTest):
    def init_args(self):
        self.k = 2
        self.axis = 1

    def setUp(self):
        self.init_args()
        self.op_type = "kthvalue"
73
        self.python_api = paddle.kthvalue
74 75 76 77
        self.dtype = np.float64
        self.input_data = np.random.random((1, 3, 2, 4, 10))
        self.inputs = {'X': self.input_data}
        self.attrs = {'k': self.k, 'axis': self.axis, 'keepdim': True}
78 79 80
        output, indices = cal_kthvalue(
            self.input_data, k=self.k, axis=self.axis, keepdim=True
        )
81 82 83 84
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
W
wanghuancoder 已提交
85
        self.check_output()
86 87 88

    def test_check_grad(self):
        paddle.enable_static()
89
        self.check_grad({'X'}, 'Out')
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107


class TestKthvalueOpKernels(unittest.TestCase):
    def setUp(self):
        self.axises = [2, -1]

    def test_kthvalue_op(self):
        paddle.disable_static()

        def test_cpu_kernel():
            shape = (2, 128, 10)
            k = 2
            paddle.set_device('cpu')
            inputs = np.random.random(shape)
            tensor = paddle.to_tensor(inputs)
            for axis in self.axises:
                value_expect, indice_expect = cal_kthvalue(inputs, k, axis)
                v, inds = paddle.kthvalue(tensor, k, axis)
108
                np.testing.assert_allclose(v.numpy(), value_expect, rtol=1e-05)
109 110 111
                np.testing.assert_allclose(
                    inds.numpy(), indice_expect, rtol=1e-05
                )
112 113 114 115 116 117 118 119 120 121

        def test_gpu_kernel():
            shape = (2, 30, 250)
            k = 244
            paddle.set_device('gpu')
            inputs = np.random.random(shape)
            tensor = paddle.to_tensor(inputs)
            for axis in self.axises:
                value_expect, indice_expect = cal_kthvalue(inputs, k, axis)
                v, inds = paddle.kthvalue(tensor, k, axis)
122
                np.testing.assert_allclose(v.numpy(), value_expect, rtol=1e-05)
123 124 125
                np.testing.assert_allclose(
                    inds.numpy(), indice_expect, rtol=1e-05
                )
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

        test_cpu_kernel()
        if fluid.core.is_compiled_with_cuda():
            test_gpu_kernel()


class TestKthvalueOpWithNaN(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        self.x = paddle.uniform([2, 200, 10], dtype='float32')

    def test_errors(self):
        def test_nan_in_cpu_kernel():
            paddle.set_device('cpu')
            nan_position = 100
            self.x[0, nan_position, 2] = float('nan')
            v, inds = self.x.kthvalue(k=200, axis=1)
            self.assertTrue(np.isnan(v[0, 2].numpy()[0]))
            self.assertEqual(inds[0, 2].numpy()[0], nan_position)

        def test_nan_in_gpu_kernel():
            paddle.set_device('gpu')
            nan_position = 100
            self.x[0, nan_position, 2] = float('nan')
            v, inds = self.x.kthvalue(k=200, axis=1)
            self.assertTrue(np.isnan(v[0, 2].numpy()[0]))
            self.assertEqual(inds[0, 2].numpy()[0], nan_position)

        test_nan_in_cpu_kernel()
        if fluid.core.is_compiled_with_cuda():
            test_nan_in_gpu_kernel()


class TestKthvalueOpErrors(unittest.TestCase):
    def setUp(self):
        self.x = paddle.uniform([2, 10, 20, 25], dtype='float32')

    def test_errors(self):
        paddle.disable_static()

        def test_k_lowrange_error():
            self.x.kthvalue(k=0, axis=2)

        self.assertRaises(ValueError, test_k_lowrange_error)

        def test_k_uprange_error():
            self.x.kthvalue(k=500, axis=2)

        self.assertRaises(ValueError, test_k_uprange_error)

        def test_dim_range_error():
            self.x.kthvalue(k=10, axis=5)

        self.assertRaises(ValueError, test_dim_range_error)

181 182 183 184 185 186
        def test_k_error_0_dim_input():
            x_0d = paddle.full([], 1)
            x_0d.kthvalue(k=8)

        self.assertRaises(ValueError, test_k_error_0_dim_input)

187 188 189 190 191 192 193 194 195

class TestModeOpInStatic(unittest.TestCase):
    def setUp(self):
        np.random.seed(666)
        self.input_data = np.random.random((2, 20, 1, 2, 80)).astype(np.float64)
        self.k = 10

    def test_run_static(self):
        paddle.enable_static()
196 197 198 199 200 201
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            input_tensor = paddle.static.data(
                name="x", shape=[2, 20, 1, 2, 80], dtype="float64"
            )
202 203 204
            result = paddle.kthvalue(input_tensor, self.k, axis=1)
            expect_value = cal_kthvalue(self.input_data, self.k, axis=1)[0]
            exe = paddle.static.Executor(paddle.CPUPlace())
205 206 207
            paddle_result = exe.run(
                feed={"x": self.input_data}, fetch_list=[result]
            )[0]
208
            np.testing.assert_allclose(paddle_result, expect_value, rtol=1e-05)
209 210


211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
class TestKthvalueFP16Op(OpTest):
    def init_args(self):
        self.k = 5
        self.axis = -1
        self.keepdim = False
        self.input_data = np.random.random((2, 1, 2, 4, 10))
        self.dtype = np.float16

    def setUp(self):
        self.op_type = "kthvalue"
        self.python_api = paddle.kthvalue
        self.init_args()
        self.inputs = {'X': self.input_data}
        self.attrs = {'k': self.k, 'axis': self.axis, 'keepdim': self.keepdim}
        output, indices = cal_kthvalue(
            self.input_data, k=self.k, axis=self.axis, keepdim=self.keepdim
        )
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
        self.check_output()

    def test_check_grad(self):
        paddle.enable_static()
        self.check_grad({'X'}, 'Out')


class TestKthvalueWithKeepdimFP16Op(TestKthvalueFP16Op):
    def init_args(self):
        self.k = 2
        self.axis = 1
        self.keepdim = True
        self.input_data = np.random.random((1, 3, 2, 4, 10))
        self.dtype = np.float16


@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not complied with CUDA and not support the bfloat16",
)
class TestKthvalueBF16Op(OpTest):
    def init_args(self):
        self.k = 2
        self.axis = 1

    def setUp(self):
        self.init_args()
        self.op_type = 'kthvalue'
        self.python_api = paddle.kthvalue
        self.dtype = np.uint16
        x = np.random.random((1, 3, 2, 4, 10))
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'k': self.k, 'axis': self.axis, 'keepdim': True}
        out, indices = cal_kthvalue(x, k=self.k, axis=self.axis, keepdim=True)
        self.outputs = {'Out': convert_float_to_uint16(out), 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        paddle.enable_static()
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, {'X'}, 'Out')


280 281
if __name__ == '__main__':
    unittest.main()