test_kthvalue_op.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17 18
import numpy as np
from op_test import OpTest
19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
import paddle
import paddle.fluid as fluid


def cal_kthvalue(x, k, axis, keepdim=False):
    if axis < 0:
        axis = len(x.shape) + axis
    indices = np.argsort(x, axis=axis)
    value = np.sort(x, axis=axis)
    indices = indices.take(indices=k - 1, axis=axis)
    value = value.take(indices=k - 1, axis=axis)
    if keepdim:
        indices = np.expand_dims(indices, axis)
        value = np.expand_dims(value, axis)
    return value, indices


class TestKthvalueOp(OpTest):
    def init_args(self):
        self.k = 5
        self.axis = -1

    def setUp(self):
        self.op_type = "kthvalue"
44
        self.python_api = paddle.kthvalue
45 46 47 48 49
        self.dtype = np.float64
        self.input_data = np.random.random((2, 1, 2, 4, 10))
        self.init_args()
        self.inputs = {'X': self.input_data}
        self.attrs = {'k': self.k, 'axis': self.axis}
50 51 52
        output, indices = cal_kthvalue(
            self.input_data, k=self.k, axis=self.axis
        )
53 54 55 56
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
57
        self.check_output(check_eager=True)
58 59 60

    def test_check_grad(self):
        paddle.enable_static()
61
        self.check_grad(set(['X']), 'Out', check_eager=True)
62 63 64 65 66 67 68 69 70 71


class TestKthvalueOpWithKeepdim(OpTest):
    def init_args(self):
        self.k = 2
        self.axis = 1

    def setUp(self):
        self.init_args()
        self.op_type = "kthvalue"
72
        self.python_api = paddle.kthvalue
73 74 75 76
        self.dtype = np.float64
        self.input_data = np.random.random((1, 3, 2, 4, 10))
        self.inputs = {'X': self.input_data}
        self.attrs = {'k': self.k, 'axis': self.axis, 'keepdim': True}
77 78 79
        output, indices = cal_kthvalue(
            self.input_data, k=self.k, axis=self.axis, keepdim=True
        )
80 81 82 83
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
84
        self.check_output(check_eager=True)
85 86 87

    def test_check_grad(self):
        paddle.enable_static()
88
        self.check_grad(set(['X']), 'Out', check_eager=True)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106


class TestKthvalueOpKernels(unittest.TestCase):
    def setUp(self):
        self.axises = [2, -1]

    def test_kthvalue_op(self):
        paddle.disable_static()

        def test_cpu_kernel():
            shape = (2, 128, 10)
            k = 2
            paddle.set_device('cpu')
            inputs = np.random.random(shape)
            tensor = paddle.to_tensor(inputs)
            for axis in self.axises:
                value_expect, indice_expect = cal_kthvalue(inputs, k, axis)
                v, inds = paddle.kthvalue(tensor, k, axis)
107
                np.testing.assert_allclose(v.numpy(), value_expect, rtol=1e-05)
108 109 110
                np.testing.assert_allclose(
                    inds.numpy(), indice_expect, rtol=1e-05
                )
111 112 113 114 115 116 117 118 119 120

        def test_gpu_kernel():
            shape = (2, 30, 250)
            k = 244
            paddle.set_device('gpu')
            inputs = np.random.random(shape)
            tensor = paddle.to_tensor(inputs)
            for axis in self.axises:
                value_expect, indice_expect = cal_kthvalue(inputs, k, axis)
                v, inds = paddle.kthvalue(tensor, k, axis)
121
                np.testing.assert_allclose(v.numpy(), value_expect, rtol=1e-05)
122 123 124
                np.testing.assert_allclose(
                    inds.numpy(), indice_expect, rtol=1e-05
                )
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

        test_cpu_kernel()
        if fluid.core.is_compiled_with_cuda():
            test_gpu_kernel()


class TestKthvalueOpWithNaN(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        self.x = paddle.uniform([2, 200, 10], dtype='float32')

    def test_errors(self):
        def test_nan_in_cpu_kernel():
            paddle.set_device('cpu')
            nan_position = 100
            self.x[0, nan_position, 2] = float('nan')
            v, inds = self.x.kthvalue(k=200, axis=1)
            self.assertTrue(np.isnan(v[0, 2].numpy()[0]))
            self.assertEqual(inds[0, 2].numpy()[0], nan_position)

        def test_nan_in_gpu_kernel():
            paddle.set_device('gpu')
            nan_position = 100
            self.x[0, nan_position, 2] = float('nan')
            v, inds = self.x.kthvalue(k=200, axis=1)
            self.assertTrue(np.isnan(v[0, 2].numpy()[0]))
            self.assertEqual(inds[0, 2].numpy()[0], nan_position)

        test_nan_in_cpu_kernel()
        if fluid.core.is_compiled_with_cuda():
            test_nan_in_gpu_kernel()


class TestKthvalueOpErrors(unittest.TestCase):
    def setUp(self):
        self.x = paddle.uniform([2, 10, 20, 25], dtype='float32')

    def test_errors(self):
        paddle.disable_static()

        def test_k_lowrange_error():
            self.x.kthvalue(k=0, axis=2)

        self.assertRaises(ValueError, test_k_lowrange_error)

        def test_k_uprange_error():
            self.x.kthvalue(k=500, axis=2)

        self.assertRaises(ValueError, test_k_uprange_error)

        def test_dim_range_error():
            self.x.kthvalue(k=10, axis=5)

        self.assertRaises(ValueError, test_dim_range_error)

180 181 182 183 184 185
        def test_k_error_0_dim_input():
            x_0d = paddle.full([], 1)
            x_0d.kthvalue(k=8)

        self.assertRaises(ValueError, test_k_error_0_dim_input)

186 187 188 189 190 191 192 193 194

class TestModeOpInStatic(unittest.TestCase):
    def setUp(self):
        np.random.seed(666)
        self.input_data = np.random.random((2, 20, 1, 2, 80)).astype(np.float64)
        self.k = 10

    def test_run_static(self):
        paddle.enable_static()
195 196 197 198 199 200
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            input_tensor = paddle.static.data(
                name="x", shape=[2, 20, 1, 2, 80], dtype="float64"
            )
201 202 203
            result = paddle.kthvalue(input_tensor, self.k, axis=1)
            expect_value = cal_kthvalue(self.input_data, self.k, axis=1)[0]
            exe = paddle.static.Executor(paddle.CPUPlace())
204 205 206
            paddle_result = exe.run(
                feed={"x": self.input_data}, fetch_list=[result]
            )[0]
207
            np.testing.assert_allclose(paddle_result, expect_value, rtol=1e-05)
208 209 210 211


if __name__ == '__main__':
    unittest.main()