jit.py 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
__all__ = ['TracedLayer', 'dygraph_to_static_output']
16

17
import gast
18 19 20
import inspect

from ..wrapped_decorator import wrap_decorator
21
from .base import program_desc_tracing_guard, switch_to_static_graph
22
from .dygraph_to_static import DygraphToStaticAst
23
from .layers import Layer
24 25 26 27
from paddle.fluid import core
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.compiler import CompiledProgram
28 29 30 31 32 33 34 35 36 37 38 39


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
40
        result_list.append(inputs)
41 42 43 44 45 46 47 48 49 50 51 52

    if isinstance(inputs, (list, tuple)):
        for var in inputs:
            _extract_vars(var, result_list)


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


53 54 55 56
def _dygraph_to_static_output_(dygraph_func):
    def __impl__(*args, **kwargs):
        # Get AST from dygraph function
        dygraph_code = inspect.getsource(dygraph_func)
57
        root = gast.parse(dygraph_code)
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

        root = DygraphToStaticAst().get_static_ast(root)

        # TODO static_func should a callable from AST, like
        # static_func = ast_to_func(root)
        # currently just use dygraph_func
        static_func = dygraph_func
        return static_func(*args, **kwargs)

    return __impl__


dygraph_to_static_output = wrap_decorator(_dygraph_to_static_output_)


73
@dygraph_only
Z
Zeng Jinle 已提交
74 75 76 77 78
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
79
    assert isinstance(layer, Layer)
80 81 82 83 84 85 86 87 88

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
89
        original_outputs = layer(*inputs)
90 91 92 93
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
94
        out_vars = [var for var in outputs]
95

96
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
97
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
98 99 100 101 102
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

103
    return original_outputs, program, feed_names, fetch_names, parameters
104 105 106 107


class TracedLayer(object):
    """
108 109 110 111 112 113 114 115 116
    TracedLayer is used to convert a forward dygraph model to a static 
    graph model. This is mainly used to save the dygraph model for online 
    inference using C++. Besides, users can also do inference in Python 
    using the converted static graph model, which usually has better 
    performance than the original dygraph model.  

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    
    All TracedLayer objects should not be created by constructor and should 
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
135
            src_tensor = p.value().get_tensor()
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
        This method is the only allowed method to create TracedLayer object. 
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
164 165
            layer (dygraph.Layer): the layer object to be traced.
            inputs (list(Variable)): the input variables of the layer object.
166 167

        Returns:
168
            tuple: A tuple of 2 items, whose the first item is the output of
169
            :code:`layer(*inputs)` , and the second item is the created
170
            TracedLayer object.
171

172
        Examples:
173 174 175
            .. code-block:: python:

                import paddle.fluid as fluid
176
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
177 178 179
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
180 181 182
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
183 184 185 186 187

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
188
                    layer = ExampleLayer()
189 190 191
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
192 193 194 195 196 197 198 199 200

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
201
        """
202 203
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
204 205 206 207 208 209 210
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
211
            build_strategy (BuildStrategy, optional): build strategy of
212 213 214 215 216 217 218 219 220 221 222
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
223
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
224 225 226
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
227 228 229
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
230 231 232 233 234

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
235
                    layer = ExampleLayer()
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
269
                feed_dict[name] = x.value().get_tensor()
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
292 293
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
294 295

        Args:
296
            dirname (str): the directory to save the inference model.
297
            feed (list[int], optional): the input variable indices of the saved
298
                inference model. If None, all input variables of the
299 300 301 302 303 304 305 306
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
307
            None
308 309 310 311 312

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
313
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
314 315 316
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
317 318 319
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
320 321 322 323

                    def forward(self, input):
                        return self._fc(input)

324 325 326
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

327
                with fluid.dygraph.guard():
328
                    layer = ExampleLayer()
329 330
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
331 332 333 334 335 336 337 338 339
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
                
                place = fluid.CPUPlace() 
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
                                                    exe) 

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
340
        """
341
        from paddle.fluid.io import save_inference_model
342 343 344 345 346

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

347
            return [all_vars[idx] for idx in partial_vars]
348 349 350 351 352 353 354 355 356 357

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

358
            save_inference_model(
359 360 361 362 363
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())