slice_op.cc 20.3 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
#include <algorithm>
17
#include <memory>
18
#include <string>
W
whs 已提交
19 20 21 22 23 24 25 26 27 28 29
#include <vector>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

30
  void InferShape(framework::InferShapeContext *ctx) const override {
31 32
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "slice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "slice");
33

34
    // Case 1: Special treatment when input is a tensor array.
35 36 37 38 39 40 41 42 43 44 45 46 47 48
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      PADDLE_ENFORCE_EQ(axes.size(), 1,
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
49 50
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
51 52 53 54 55 56
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
57 58

    // Case 2: input is a tensor.
W
whs 已提交
59
    auto in_dims = ctx->GetInputDim("Input");
60
    PADDLE_ENFORCE_LT(in_dims.size(), 7,
T
Thunderbrook 已提交
61 62
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
63
    framework::DDim out_dims(in_dims);
64

W
whs 已提交
65 66
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
H
Hongyu Liu 已提交
67
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
68
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
69 70 71 72 73 74
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

75 76 77 78
    // 2.1 Check attrs.
    auto starts_size = starts.size();
    auto ends_size = ends.size();

79
    if (ctx->HasInputs("StartsTensorList")) {
80 81
      starts_size = ctx->Inputs("StartsTensorList").size();
      PADDLE_ENFORCE_GT(starts_size, 0,
T
Thunderbrook 已提交
82 83
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
84 85
    }
    if (ctx->HasInputs("EndsTensorList")) {
86 87 88
      ends_size = ctx->Inputs("EndsTensorList").size();
      PADDLE_ENFORCE_GT(ends_size, 0, platform::errors::InvalidArgument(
                                          "EndsTensorList size can't be zero"));
89 90
    }

91
    if (!ctx->HasInput("StartsTensor")) {
92 93
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
T
Thunderbrook 已提交
94 95
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
96
    }
97
    if (!ctx->HasInput("EndsTensor")) {
T
Thunderbrook 已提交
98 99 100 101
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
102 103
    }

104 105
    CheckAndUpdateSliceAttrs<int>(in_dims, axes, &starts, &ends, nullptr,
                                  &infer_flags);
H
Hongyu Liu 已提交
106

107 108 109 110 111 112
    auto slice_dims =
        GetSliceDims<int>(in_dims, axes, starts, ends, nullptr, &infer_flags);
    if (ctx->IsRuntime()) {
      out_dims = GetDecreasedDims<int>(slice_dims, decrease_axis, &infer_flags);
    } else {
      out_dims = GetDecreasedDims<int>(slice_dims, decrease_axis, nullptr);
H
Hongyu Liu 已提交
113
    }
114

W
whs 已提交
115
    ctx->SetOutputDim("Out", out_dims);
116
    if (axes.size() > 0 && axes[0] != 0) {
J
jerrywgz 已提交
117 118
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
119 120 121 122
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
123
      const framework::ExecutionContext &ctx) const override {
124 125 126 127 128 129 130
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
          in_tensor.IsInitialized(), true,
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
131 132
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
133 134 135
        return framework::OpKernelType(
            framework::TransToProtoVarType(in_tensor.dtype()),
            ctx.device_context());
136
      }
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

#ifdef PADDLE_WITH_MKLDNN
      auto input_data_type =
          framework::OperatorWithKernel::IndicateVarDataType(ctx, "Input");

      if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
        // OneDNN uses blocking format, which cannot be always supported with
        // reorders, because if blocked dimension is not divisible by 8 or
        // 16(depending on which blocking format is used) submemory cannot be
        // created, so in that scenario a fallback is needed
        auto tmp_md = dnnl::memory::desc(
            framework::vectorize(ctx.Input<Tensor>("Input")->dims()),
            dnnl::memory::data_type::f32, ctx.Input<Tensor>("Input")->format());
        if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
          return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                         framework::DataLayout::kMKLDNN,
                                         framework::LibraryType::kMKLDNN);
      }
#endif

157 158
      return framework::OpKernelType(
          framework::TransToProtoVarType(in_tensor.dtype()), in_tensor.place());
159
    }
160
    return framework::OpKernelType(
161
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
162
  }
163

164 165 166 167 168 169 170 171 172 173 174
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
W
whs 已提交
175 176 177
  }
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
    auto not_decrease = boost::get<std::vector<int>>(decrease_axis).size() == 0;
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
197 198 199
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
225 226 227 228 229 230 231
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
232 233 234 235 236
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
237
    AddAttr<std::vector<int>>(
238 239
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
240 241
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
242 243
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
244 245
        .SetDefault(false)
        .AsExtra();
246 247 248 249
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
Z
Zuza 已提交
250
        .InEnum({"float32", "int8", "bfloat16"})
251
        .AsExtra();
W
whs 已提交
252 253 254 255 256
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
257
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
258
end dimension for each axis in the list of axes, it uses this information
259 260
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
261
of that dimension. If the value passed to start or end is larger than
262 263
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
264
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
265 266
Following examples will explain how slice works:

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
285 286 287 288
)DOC");
  }
};

289 290 291 292
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

293
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
294 295 296
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::InvalidArgument("Input should not be null"));
297
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
T
Thunderbrook 已提交
298 299
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
300 301 302 303 304 305 306 307
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
308 309 310 311 312 313
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
314

315
  framework::OpKernelType GetExpectedKernelType(
316
      const framework::ExecutionContext &ctx) const override {
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
      // created, so in that scenario a fallback is needed
      auto tmp_md = dnnl::memory::desc(
          framework::vectorize(
              ctx.Input<Tensor>(framework::GradVarName("Out"))->dims()),
          dnnl::memory::data_type::f32,
          ctx.Input<Tensor>(framework::GradVarName("Out"))->format());
      if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
        return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
338
  }
339

340 341 342 343 344 345 346 347 348 349 350
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
351
  }
352 353
};

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
369 370
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
371
 public:
H
hong 已提交
372
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
373 374

 protected:
375
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
376
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
377 378 379 380 381 382 383 384 385 386 387 388
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
389 390 391
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
392 393 394 395
    bind->SetType("slice_grad");
  }
};

396 397 398 399 400 401
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
402
  void Apply(GradOpPtr<T> bind) const override {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

422
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
423
                                    "Input");
424

W
whs 已提交
425 426 427 428 429
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
H
hong 已提交
430
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
431 432
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
433
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
434 435
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
436
                  ops::SliceOpGradNoNeedBufferVarsInferer,
437
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
438 439

REGISTER_OP_CPU_KERNEL(
W
WeiXin 已提交
440 441
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
W
whs 已提交
442 443
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
444 445
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
446
                     paddle::platform::complex<float>>,
447
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
448 449 450
                     paddle::platform::complex<double>>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::bfloat16>);
451 452

REGISTER_OP_CPU_KERNEL(
W
WeiXin 已提交
453 454
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
455 456
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
457 458
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
459
                         paddle::platform::complex<float>>,
460
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
461 462 463
                         paddle::platform::complex<double>>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::bfloat16>);
464 465

REGISTER_OP_CUDA_KERNEL(
W
WeiXin 已提交
466 467
    slice, ops::SliceKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, float>,
468 469 470 471 472
    ops::SliceKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>,
473 474
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::bfloat16>,
475
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
476
                     paddle::platform::complex<float>>,
477
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
478
                     paddle::platform::complex<double>>);
479 480

REGISTER_OP_CUDA_KERNEL(
W
WeiXin 已提交
481
    slice_grad, ops::SliceGradKernel<paddle::platform::CUDADeviceContext, bool>,
482 483 484 485 486 487
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>,
488 489
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::bfloat16>,
490
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
491
                         paddle::platform::complex<float>>,
492
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
493
                         paddle::platform::complex<double>>);