the_one_ps.py 59.1 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
ziyoujiyi 已提交
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Z
ziyoujiyi 已提交
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
Z
ziyoujiyi 已提交
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
ziyoujiyi 已提交
14 15 16 17 18

import warnings

import os
import paddle.fluid as fluid
Z
ziyoujiyi 已提交
19
from paddle.distributed import fleet
Z
ziyoujiyi 已提交
20
from paddle.fluid import core
Z
ziyoujiyi 已提交
21
from paddle.distributed.ps.utils.public import *
Z
ziyoujiyi 已提交
22 23 24 25 26
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
W
wangguanqun 已提交
27 28
from paddle.distributed.fleet.runtime.runtime_base import RuntimeBase
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
Z
ziyoujiyi 已提交
29
from paddle.distributed.fleet.proto import the_one_ps_pb2
Z
ziyoujiyi 已提交
30 31
from paddle.fluid.communicator import Communicator, HeterClient
from google.protobuf import text_format
32
from paddle.distributed.ps.coordinator import Coordinator
Z
ziyoujiyi 已提交
33

Z
ziyoujiyi 已提交
34 35 36 37
__all__ = [
    'Table', 'SparseTable', 'GeoSparseTable', 'BarrierTable', 'TensorTable',
    'DenseTable'
]
Z
ziyoujiyi 已提交
38 39


W
wangguanqun 已提交
40 41 42 43
def get_program_by_id(context, program_id):
    programs = context["origin_main_programs"]
    for i, program in enumerate(programs):
        if id(program) == program_id:
44 45
            return program, context["origin_startup_programs"][i], i
    return None, None, None
W
wangguanqun 已提交
46 47 48


def parse_table_class(varname, program_id, context):
49
    main_program, startup_program, idx = get_program_by_id(context, program_id)
W
wangguanqun 已提交
50
    for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
51 52 53 54 55 56 57 58 59 60 61 62
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "MemorySparseTable"


Z
ziyoujiyi 已提交
63
def check_embedding_dim(accessor_proto, varname, program_id, context):
64
    main_program, startup_program, idx = get_program_by_id(context, program_id)
Z
ziyoujiyi 已提交
65
    embedding_dim = 0
W
wangguanqun 已提交
66
    for var in main_program.list_vars():
Z
ziyoujiyi 已提交
67 68
        if var.name == varname:
            embedding_dim = var.shape[1]
Z
ziyoujiyi 已提交
69 70
            print('new var: {}, {}, {}'.format(var, embedding_dim,
                                               accessor_proto.fea_dim))
Z
ziyoujiyi 已提交
71
            break
72

Z
ziyoujiyi 已提交
73
    fea_dim = accessor_proto.fea_dim
74 75 76
    if accessor_proto.accessor_class == "SparseAccessor":
        if fea_dim != embedding_dim + 2:
            raise ValueError(
77 78
                "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}"
                .format(embedding_dim + 2, fea_dim))
79 80 81
    else:
        if fea_dim != embedding_dim:
            raise ValueError(
82 83
                "The fea_dim is wrong, it will be sparse_embedding_dim: {}, but got {}"
                .format(embedding_dim, fea_dim))
84

Z
ziyoujiyi 已提交
85
    embedx_dim = accessor_proto.embedx_dim
86 87 88
    if accessor_proto.accessor_class == "SparseAccessor":
        if embedx_dim != embedding_dim - 1:
            raise ValueError(
89 90
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}"
                .format(embedding_dim - 1, embedx_dim))
91 92 93
    else:
        if embedx_dim != embedding_dim - 3:
            raise ValueError(
94 95
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 3: {}, but got {}"
                .format(embedding_dim - 3, embedx_dim))
Z
ziyoujiyi 已提交
96 97


Z
ziyoujiyi 已提交
98
class Service:
99

Z
ziyoujiyi 已提交
100 101 102 103 104 105 106 107 108 109 110 111
    def __init__(self):
        pass

    def _set(self, service_proto):
        service_proto.server_class = "BrpcPsServer"
        service_proto.client_class = "BrpcPsClient"
        service_proto.service_class = "BrpcPsService"
        service_proto.start_server_port = 0
        service_proto.server_thread_num = 12


class GpuService(Service):
112

Z
ziyoujiyi 已提交
113
    def __init__(self):
114
        super(GpuService, self).__init__()
Z
ziyoujiyi 已提交
115 116 117 118 119 120

    def _set(self, service_proto):
        service_proto.server_class = 'PsLocalServer'
        service_proto.client_class = 'PsLocalClient'


Z
ziyoujiyi 已提交
121
class Accessor:
122

Z
ziyoujiyi 已提交
123 124 125
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
Z
ziyoujiyi 已提交
126 127
        self.feature_dim = 0
        self.embedding_dim = 0
Z
ziyoujiyi 已提交
128

Z
ziyoujiyi 已提交
129 130
    # TableAccessorParameter accessor
    def _set(self, accessor_proto, varname, program_id, context):
131 132
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
Z
ziyoujiyi 已提交
133 134 135 136 137
        embedding_dim = 0
        for var in main_program.list_vars():
            if var.name == varname:
                embedding_dim = var.shape[1]
                break
Z
ziyoujiyi 已提交
138

Z
ziyoujiyi 已提交
139
        if not accessor_proto.HasField("accessor_class"):
140
            # DownpourSparseValueAccessor
141
            if context['use_ps_gpu']:
142
                accessor_proto.accessor_class = "CtrDymfAccessor"
143 144
            else:
                accessor_proto.accessor_class = "SparseAccessor"
Z
ziyoujiyi 已提交
145
        if not accessor_proto.HasField("fea_dim"):
146 147 148 149
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.fea_dim = embedding_dim + 2
            else:
                accessor_proto.fea_dim = embedding_dim
Z
ziyoujiyi 已提交
150
        if not accessor_proto.HasField("embedx_dim"):
151 152 153 154
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.embedx_dim = embedding_dim - 1
            else:
                accessor_proto.embedx_dim = embedding_dim - 3
Z
ziyoujiyi 已提交
155 156 157
        if not accessor_proto.HasField("embedx_threshold"):
            accessor_proto.embedx_threshold = 0

D
danleifeng 已提交
158 159 160 161 162 163
        graph_sgd_param = accessor_proto.graph_sgd_param
        if not graph_sgd_param.HasField("nodeid_slot"):
            graph_sgd_param.nodeid_slot = 9008
        if not graph_sgd_param.HasField("feature_learning_rate"):
            graph_sgd_param.feature_learning_rate = 0.05

Z
ziyoujiyi 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        ctr_accessor_param = accessor_proto.ctr_accessor_param
        if not ctr_accessor_param.HasField("nonclk_coeff"):
            ctr_accessor_param.nonclk_coeff = 0.1
        if not ctr_accessor_param.HasField("click_coeff"):
            ctr_accessor_param.click_coeff = 1.0
        if not ctr_accessor_param.HasField("base_threshold"):
            ctr_accessor_param.base_threshold = 0
        if not ctr_accessor_param.HasField("delta_threshold"):
            ctr_accessor_param.delta_threshold = 0
        if not ctr_accessor_param.HasField("delta_keep_days"):
            ctr_accessor_param.delta_keep_days = 16
        if not ctr_accessor_param.HasField("show_click_decay_rate"):
            ctr_accessor_param.show_click_decay_rate = 1
        if not ctr_accessor_param.HasField("delete_threshold"):
            ctr_accessor_param.delete_threshold = 0
        if not ctr_accessor_param.HasField("delete_after_unseen_days"):
            ctr_accessor_param.delete_after_unseen_days = 30
        if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
            ctr_accessor_param.ssd_unseenday_threshold = 1

        for sgd_param in [
                accessor_proto.embed_sgd_param, accessor_proto.embedx_sgd_param
        ]:
            if not sgd_param.HasField("name"):
                sgd_param.name = "SparseAdaGradSGDRule"
            if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
                if not sgd_param.adagrad.HasField("learning_rate"):
                    sgd_param.adagrad.learning_rate = 0.05
                if not sgd_param.adagrad.HasField("initial_g2sum"):
                    sgd_param.adagrad.initial_g2sum = 3.0
                if not sgd_param.adagrad.HasField("initial_range"):
                    sgd_param.adagrad.initial_range = 0.0001
                if len(sgd_param.adagrad.weight_bounds) == 0:
                    sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
            if sgd_param.name == "SparseNaiveSGDRule":
                if not sgd_param.naive.HasField("learning_rate"):
                    sgd_param.naive.learning_rate = 0.05
                if not sgd_param.naive.HasField("initial_range"):
                    sgd_param.naive.initial_range = 0.0001
                if len(sgd_param.naive.weight_bounds) == 0:
                    sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
D
danleifeng 已提交
205
            if sgd_param.name == "SparseAdamSGDRule" or sgd_param.name == "SparseSharedAdamSGDRule":
Z
ziyoujiyi 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
                if not sgd_param.adam.HasField("learning_rate"):
                    sgd_param.adam.learning_rate = 0.001
                if not sgd_param.adam.HasField("initial_range"):
                    sgd_param.adam.initial_range = 0.0001
                if not sgd_param.adam.HasField("beta1_decay_rate"):
                    sgd_param.adam.beta1_decay_rate = 0.9
                if not sgd_param.adam.HasField("beta2_decay_rate"):
                    sgd_param.adam.beta2_decay_rate = 0.999
                if not sgd_param.adam.HasField("ada_epsilon"):
                    sgd_param.adam.ada_epsilon = 1e-08
                if len(sgd_param.adam.weight_bounds) == 0:
                    sgd_param.adam.weight_bounds.extend([-10.0, 10.0])


class CommonAccessor(Accessor):
221

Z
ziyoujiyi 已提交
222
    def __init__(self):
Z
ziyoujiyi 已提交
223 224 225
        super(CommonAccessor, self).__init__()
        self.table_name = ''
        self.entry = 'none'
Z
ziyoujiyi 已提交
226 227 228 229
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
Z
ziyoujiyi 已提交
230
        self.sync = False
Z
ziyoujiyi 已提交
231 232 233 234 235 236 237 238 239 240 241 242
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
243 244 245 246 247
        opt_input_map["adam_d2sum"] = [("Param", None), ("D2Sum", None),
                                       ("G2Sum", None), ("Moment", None),
                                       ("MomentDecayRate", 1),
                                       ("AdaDecayRate", 1), ("AdaEpsilon", 1),
                                       ("LearningRate", 1)]
Z
ziyoujiyi 已提交
248 249 250
        opt_input_map["sum"] = [("Param", None)]
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
W
wangguanqun 已提交
251
        opt_input_map["summary"] = [("Param", None), ("SummaryDecayRate", 1)]
Z
ziyoujiyi 已提交
252 253 254 255 256 257 258 259 260

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["naive_adagrad"] = []
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
W
wangguanqun 已提交
261
        opt_attr_map["summary"] = []
Z
ziyoujiyi 已提交
262 263 264 265 266 267 268 269 270 271 272

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

W
wangguanqun 已提交
273
    def parse_entry(self, varname, program_id, context):
274 275
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
W
wangguanqun 已提交
276
        for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

    def get_shard(self, total_dim, shard_num, pserver_id):
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
306
        # print("get_initializer_attr param name:", value_name)
Z
ziyoujiyi 已提交
307 308 309 310
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
311
                # print("get_initializer_attr op type:", op.type)
Z
ziyoujiyi 已提交
312
                for attr in self.opt_init_map[op.type]:
313
                    # print("get_initializer_attr opt_init_map attr:", attr)
Z
ziyoujiyi 已提交
314
                    init_attr.append(str(op.attr(attr)))
315
                    # print("get_initializer_attr op attr:", str(op.attr(attr)))
Z
ziyoujiyi 已提交
316 317 318 319
                attr_str = l_in.join(init_attr)
                break
        return attr_str

W
wangguanqun 已提交
320 321 322 323 324 325
    def parse_by_optimizer(self, ctx, context):
        grad_name = ctx.origin_varnames()[0]
        is_sparse = ctx.is_sparse()
        size = ctx.sections()[0]
        single_dim = ctx.sections()[1] if ctx.is_sparse() else 1
        adam_d2sum = context["user_defined_strategy"].adam_d2sum
326 327
        # print("parse_by_optimizer table_id:{} is_datanorm:{}".format(
        #     ctx.table_id(), ctx.is_datanorm_table()))
W
wangguanqun 已提交
328

329 330
        main_program, startup_program, idx = get_program_by_id(
            context, ctx.program_id())
Z
ziyoujiyi 已提交
331 332 333
        pserver_id = get_role_id(context['role_maker'])
        pserver_num = len(get_ps_endpoints(context['role_maker']))
        optimizer_ops = get_optimize_ops(main_program)
334 335
        # print("the one ps optimizer_ops:", optimizer_ops)
        # print("the one ps parse_by_optimizer grad_name:", grad_name)
Z
ziyoujiyi 已提交
336 337 338 339
        oop = None

        for op in optimizer_ops:
            if ("Param" in op.input_names) and (
340 341
                    op.input("Param")[0]
                    == context['grad_name_to_param_name'][grad_name]):
Z
ziyoujiyi 已提交
342 343 344 345 346 347 348 349 350 351 352 353
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = get_trainers(context['role_maker'])
W
wangguanqun 已提交
354 355
        self.table_num = size
        self.table_dim = single_dim
Z
ziyoujiyi 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368

        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
        if context['ps_mode'] == DistributedMode.GEO:
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        elif context['use_ps_gpu'] and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
W
wangguanqun 已提交
369 370 371 372 373
        elif ctx.is_datanorm_table():
            param_varnames = self.opt_input_map["summary"]
            attr_varnames = self.opt_attr_map["summary"]
            self.accessor_class = "summary"
        elif adam_d2sum and not is_sparse:
Z
ziyoujiyi 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
        else:
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            if self.accessor_class == "adam_d2sum":
                #for dims
                if shape is None:
                    if is_sparse:
W
wangguanqun 已提交
388
                        shape = single_dim
Z
ziyoujiyi 已提交
389
                    else:
W
wangguanqun 已提交
390
                        shape = self.get_shard(size, pserver_num, pserver_id)
Z
ziyoujiyi 已提交
391 392 393 394 395 396 397
                dims.append(shape)

                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
398 399
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
400 401
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
402
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
403

404 405
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
406 407 408 409 410 411 412 413 414
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
W
wangguanqun 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428
            elif self.accessor_class == "summary":
                #for dims
                if shape is None:
                    if is_sparse:
                        shape = single_dim
                    else:
                        shape = self.get_shard(size, pserver_num, pserver_id)
                dims.append(shape)

                #for initializers
                if formal_name == "Param":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]

429 430
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
W
wangguanqun 已提交
431
                elif formal_name == "SummaryDecayRate":
432
                    initializer = "fill_constant&0.999999"
W
wangguanqun 已提交
433 434 435
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
Z
ziyoujiyi 已提交
436 437 438 439 440 441 442 443
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
444 445
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
446 447
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
448
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
449 450 451

                    if shape is None:
                        if is_sparse:
W
wangguanqun 已提交
452
                            shape = single_dim
Z
ziyoujiyi 已提交
453
                        else:
W
wangguanqun 已提交
454
                            shape = self.get_shard(size, pserver_num,
Z
ziyoujiyi 已提交
455 456 457
                                                   pserver_id)
                    dims.append(shape)

458 459
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
460 461 462 463 464 465 466 467 468 469 470
                    initializers.append(initializer)

        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
            attrs.append("&".join([attr_varname, type_, str(value)]))

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

Z
ziyoujiyi 已提交
471 472 473 474 475 476 477 478 479 480 481 482
    # CommonAccessorParameter common
    def _set(self, proto):
        proto.name = self.accessor_class
        proto.table_name = self.table_name
        proto.params.extend(self.params)
        proto.dims.extend(self.dims)
        proto.initializers.extend(self.initializers)
        proto.entry = self.entry
        proto.trainer_num = self.trainer_num
        proto.sync = self.sync
        proto.table_num = self.table_num
        proto.table_dim = self.table_dim
Z
ziyoujiyi 已提交
483 484 485


class Tensor:
486

Z
ziyoujiyi 已提交
487 488 489 490
    def __init__(self, tesnor_dcit):
        self.tensor_dict = tesnor_dcit

    def _set(self, tensor_proto):
491 492
        tensor_proto.main_program_id = self.tensor_dict.get(
            "main_program_id", 0)
Z
ziyoujiyi 已提交
493 494 495 496 497 498
        tensor_proto.startup_program_id = self.tensor_dict.get(
            "startup_program_id", 0)
        tensor_proto.feed_var_name = self.tensor_dict.get("feed_var_name", '')
        tensor_proto.fetch_var_name = self.tensor_dict.get("fetch_var_name", '')
        tensor_proto.tensor_table_class = self.tensor_dict.get(
            "tensor_table_class", '')
Z
ziyoujiyi 已提交
499 500 501


class Table:
502

Z
ziyoujiyi 已提交
503 504 505 506
    def __init__(self):
        self.table_class = None
        self.shard_num = -1
        self.type = None
Z
ziyoujiyi 已提交
507 508 509
        self.accessor = Accessor()
        self.shard_num = 256
        self.common = CommonAccessor()
Z
ziyoujiyi 已提交
510 511
        self.tensor = None

Z
ziyoujiyi 已提交
512 513
    def _set(self, table_proto):
        pass
Z
ziyoujiyi 已提交
514 515


Z
ziyoujiyi 已提交
516
class BarrierTable(Table):
517

Z
ziyoujiyi 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    def __init__(self, context, idx):
        super(BarrierTable, self).__init__()
        self.type = None
        self.shard_num = 256
        self.accessor.accessor_class = 'CommMergeAccessor'
        self.common.attrs = ""
        self.common.dims = []
        self.common.params = []
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.role_maker = context['role_maker']
        self.idx = idx
        self.is_sync = context['is_sync']

    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.table_class = 'BarrierTable'
        table_proto.shard_num = 256
Z
ziyoujiyi 已提交
535
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549

        table_proto.accessor.accessor_class = "CommMergeAccessor"
        table_proto.accessor.fea_dim = 0
        table_proto.accessor.embedx_dim = 0

        table_proto.common.name = ""
        table_proto.common.table_name = "barrier_table"
        table_proto.common.sync = self.is_sync
        table_proto.common.entry = 'none'

        trainer_num = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainer_num += len(self.role_maker._get_heter_worker_endpoints())
        table_proto.common.trainer_num = trainer_num
Z
ziyoujiyi 已提交
550 551


Z
ziyoujiyi 已提交
552
class TensorTable(Table):
553

Z
ziyoujiyi 已提交
554 555 556 557 558
    def __init__(self, idx, tensor_dict, role_maker):
        super(TensorTable, self).__init__()
        self.idx = idx
        self.tensor_dict = tensor_dict
        self.role_maker = role_maker
Z
ziyoujiyi 已提交
559

Z
ziyoujiyi 已提交
560 561
    def _set(self, table_proto):
        table_proto.table_id = self.idx
Z
ziyoujiyi 已提交
562
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
563
        table_proto.table_class = self.tensor_dict.get("tensor_table_class", '')
Z
ziyoujiyi 已提交
564

Z
ziyoujiyi 已提交
565
        table_proto.accessor.accessor_class = "CommMergeAccessor"
Z
ziyoujiyi 已提交
566

567 568
        table_proto.common.table_name = self.tensor_dict.get(
            "feed_var_name", '')
Z
ziyoujiyi 已提交
569
        table_proto.common.trainer_num = get_trainers(self.role_maker)
Z
ziyoujiyi 已提交
570

Z
ziyoujiyi 已提交
571 572
        tensor = Tensor(self.tensor_dict)
        tensor._set(table_proto.tensor)
Z
ziyoujiyi 已提交
573 574


Z
ziyoujiyi 已提交
575
class SparseTable(Table):
576

Z
ziyoujiyi 已提交
577 578 579 580 581 582 583
    def __init__(self, context, send_ctx):
        super(SparseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.type = None
        self.table_class = 'MemorySparseTable'
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
584

Z
ziyoujiyi 已提交
585 586
    def _set(self, table_proto):
        ctx = self.ctx
587 588
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
589 590 591
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
592
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605
        table_proto.shard_num = self.shard_num

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]

        print('new table_name: {}'.format(self.common.table_name))
        all_table_proto = self.context[
            "user_defined_strategy"].sparse_table_configs
        usr_table_proto = all_table_proto.add()
        for proto in all_table_proto:
            if proto.table_name == self.common.table_name:
                usr_table_proto = proto
                break
606 607 608 609 610
        if usr_table_proto.HasField("table_class"):
            table_proto.table_class = usr_table_proto.table_class
        else:
            table_proto.table_class = 'MemorySparseTable'
            warnings.warn("The PS mode must use MemorySparseTable.")
Z
ziyoujiyi 已提交
611 612 613
        if usr_table_proto.HasField("shard_num"):
            table_proto.shard_num = usr_table_proto.shard_num
        else:
614 615 616 617 618 619 620 621 622 623
            if self.context['use_ps_gpu']:
                table_proto.shard_num = 37
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 37 in gpups."
                )
            else:
                table_proto.shard_num = 1000
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 1000 in cpups."
                )
Z
ziyoujiyi 已提交
624

Z
ziyoujiyi 已提交
625 626 627
        if usr_table_proto.accessor.ByteSize() == 0:
            warnings.warn(
                "The accessor of sparse table is not set, use default value.")
Z
ziyoujiyi 已提交
628

Z
ziyoujiyi 已提交
629 630 631 632
        table_proto.accessor.ParseFromString(
            usr_table_proto.accessor.SerializeToString())
        self.accessor._set(table_proto.accessor, self.common.table_name,
                           ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
633

Z
ziyoujiyi 已提交
634 635
        check_embedding_dim(table_proto.accessor, self.common.table_name,
                            ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
636

Z
ziyoujiyi 已提交
637
        self.common.parse_by_optimizer(ctx, self.context)
638 639
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
640
        self.common.sync = True if self.context['is_sync'] else False
Z
ziyoujiyi 已提交
641

Z
ziyoujiyi 已提交
642
        self.common._set(table_proto.common)
Z
ziyoujiyi 已提交
643 644


Z
ziyoujiyi 已提交
645
class GeoSparseTable(SparseTable):
646

Z
ziyoujiyi 已提交
647 648
    def __init__(self, context, send_ctx):
        super(GeoSparseTable, self).__init__(context, send_ctx)
649
        self.table_class = "MemorySparseGeoTable"
Z
ziyoujiyi 已提交
650 651 652 653 654
        if self.context['ps_mode'] != DistributedMode.GEO:
            raise ValueError("not geo sparse table!")

    def _set(self, table_proto):
        ctx = self.ctx
655 656
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
657 658 659
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
660
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
661 662 663 664 665 666 667 668 669
        table_proto.shard_num = self.shard_num

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = ctx.sections()[1]

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]
        self.common.parse_by_optimizer(ctx, self.context)
670 671
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
672 673 674 675 676
        self.common.sync = False
        self.common._set(table_proto.common)


class DenseTable(Table):
677

Z
ziyoujiyi 已提交
678 679 680 681 682
    def __init__(self, context, send_ctx):
        super(DenseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
683

Z
ziyoujiyi 已提交
684 685
    def _set(self, table_proto):
        ctx = self.ctx
686 687
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == True):
Z
ziyoujiyi 已提交
688 689 690 691
            return

        table_proto.table_id = ctx.table_id()

Z
ziyoujiyi 已提交
692
        table_proto.type = the_one_ps_pb2.PS_DENSE_TABLE
693
        table_proto.table_class = "MemoryDenseTable"
Z
ziyoujiyi 已提交
694 695 696 697 698 699 700 701
        table_proto.shard_num = 256

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = 1

        self.common.table_name = "MergedDense"
        self.common.parse_by_optimizer(ctx, self.context)
702 703
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
704 705 706 707 708 709
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)


class Server:
710

Z
ziyoujiyi 已提交
711
    def __init__(self):
Z
ziyoujiyi 已提交
712
        pass
Z
ziyoujiyi 已提交
713

Z
ziyoujiyi 已提交
714 715
    def _set(self):
        pass
Z
ziyoujiyi 已提交
716 717


Z
ziyoujiyi 已提交
718
class DownpourServer(Server):
719

Z
ziyoujiyi 已提交
720 721 722 723 724
    def __init__(self):
        super(DownpourServer, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
725 726 727


class Worker:
728

Z
ziyoujiyi 已提交
729
    def __init__(self):
Z
ziyoujiyi 已提交
730
        pass
Z
ziyoujiyi 已提交
731

Z
ziyoujiyi 已提交
732 733
    def _set(self):
        pass
Z
ziyoujiyi 已提交
734 735


Z
ziyoujiyi 已提交
736
class DownpourWorker(Worker):
737

Z
ziyoujiyi 已提交
738 739 740 741 742
    def __init__(self):
        super(DownpourWorker, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
743 744 745


class fsClient:
746

Z
ziyoujiyi 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759
    def __init__(self, fs_client_param):
        self.fs_client_param = fs_client_param

    def _set(self, proto):
        if not text_format.MessageToString(self.fs_client_param):
            return
        proto.uri = self.fs_client_param.uri
        proto.user = self.fs_client_param.user
        proto.passwd = self.fs_client_param.passwd
        proto.hadoop_bin = self.fs_client_param.hadoop_bin


class PsDescBuilder(object):
760

Z
ziyoujiyi 已提交
761 762 763 764 765 766
    def __init__(self, context):
        self.context = context
        self.is_sync = context['is_sync']
        self.ps_mode = context['ps_mode']
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.use_ps_gpu = context['use_ps_gpu']
767
        self.barrier_table_id = None
768 769
        print("is_heter_ps_mode in the_one_ps.py? {}".format(
            self.is_heter_ps_mode))
Z
ziyoujiyi 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782
        self.send_ctx = get_the_one_send_context(
            self.context,
            use_origin_program=True,
            split_dense_table=self.is_heter_ps_mode)

        self.tensor_table_dict = {}  # TODO
        self._server_sub_program = []

        self.tables = self._get_tables()

        self.service = self._get_service()
        self.fs_client = self._get_fs_client()

Z
ziyoujiyi 已提交
783
        self.ps_desc = the_one_ps_pb2.PSParameter()
784
        self.fl_desc = the_one_ps_pb2.FLParameter()
Z
ziyoujiyi 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

    def _get_tensor_tables(self):
        program_idx = 0
        if not self.tensor_table_dict:
            self._server_sub_program.append(Program().desc)
        tables = []
        for table_name in self.tensor_table_dict:
            tables.append(globals()['TensorTable'](len(tables), tensor_dict,
                                                   self.context['role_maker']))
            program_idx += 1
        return tables

    def _get_tables(self):
        tables = []
        for idx, (name, ctx) in enumerate(self.send_ctx.items()):
            if ctx.is_sparse():
                if self.ps_mode == DistributedMode.GEO:
                    tables.append(globals()['GeoSparseTable'](self.context,
                                                              ctx))
                else:
                    tables.append(globals()['SparseTable'](self.context, ctx))
            else:
                tables.append(globals()['DenseTable'](self.context, ctx))
        self.tensor_tables = self._get_tensor_tables()
        tables.extend(self.tensor_tables)
        tables.append(globals()['BarrierTable'](self.context, len(tables)))
811
        print("test_fl_ps: tables len: {}".format(len(tables)))
Z
ziyoujiyi 已提交
812 813 814 815 816
        return tables

    def _get_service(self):
        if self.use_ps_gpu:
            return GpuService()
Z
ziyoujiyi 已提交
817
        else:
Z
ziyoujiyi 已提交
818 819 820 821 822
            return Service()

    def _get_fs_client(self):
        return fsClient(self.context["user_defined_strategy"].fs_client_param)

823 824 825
    def build_fl_client_desc(self, client_info):
        pass

Z
ziyoujiyi 已提交
826 827 828 829 830 831 832 833
    def build_worker_desc(self):
        for table in self.tables:
            table_proto = self.ps_desc.worker_param.downpour_worker_param.downpour_table_param.add(
            )
            table._set(table_proto)
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
834 835
            if type(table) == BarrierTable and self.barrier_table_id is None:
                self.barrier_table_id = table.idx
Z
ziyoujiyi 已提交
836 837
        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
838
        self.fs_client._set(self.ps_desc.fs_client_param)
Z
ziyoujiyi 已提交
839 840 841
        return text_format.MessageToString(self.ps_desc)

    def build_server_desc(self):
842
        self.sparse_table_maps = {}
Z
ziyoujiyi 已提交
843 844 845 846
        for table in self.tables:
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
Z
ziyoujiyi 已提交
847
            if table_proto.type == the_one_ps_pb2.PS_SPARSE_TABLE and table_proto.common is not None:
Z
ziyoujiyi 已提交
848 849 850 851 852 853 854
                self.sparse_table_maps[
                    table_proto.common.table_name] = table_proto.table_id

        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        self.fs_client._set(self.ps_desc.fs_client_param)
        return text_format.MessageToString(self.ps_desc)
Z
ziyoujiyi 已提交
855 856 857


class TheOnePSRuntime(RuntimeBase):
858

Z
ziyoujiyi 已提交
859 860 861 862 863
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
864
        self._coordinator = None
Z
ziyoujiyi 已提交
865 866
        self._server_sub_program = []
        self._heter_client = None
867
        self._send_ctx = None
Z
ziyoujiyi 已提交
868 869 870 871

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
872 873
        self.role_id = get_role_id(self.role_maker)
        self.debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
W
wangguanqun 已提交
874

Z
ziyoujiyi 已提交
875
        self.origin_main_program = context["origin_main_program"]
Z
ziyoujiyi 已提交
876 877 878 879 880
        self.origin_main_programs = context.get("origin_main_programs",
                                                [self.origin_main_program])
        self.context["origin_main_programs"] = self.origin_main_programs
        self.context["origin_startup_programs"] = context.get(
            'origin_startup_programs', [context['origin_startup_program']])
Z
ziyoujiyi 已提交
881 882 883
        self.context[
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
        self.is_heter_ps_mode = self.context['is_heter_ps_mode']
884 885
        self.context['trainer'] = TrainerRuntimeConfig(
            context['valid_strategy'])
Z
ziyoujiyi 已提交
886
        self.context['ps_mode'] = self.context['trainer'].mode
W
wangguanqun 已提交
887 888
        self.context['use_ps_gpu'] = context['valid_strategy'].a_sync_configs[
            'use_ps_gpu']
Z
ziyoujiyi 已提交
889
        self.context['is_sync'] = True if self.context[
Z
ziyoujiyi 已提交
890 891
            'ps_mode'] == DistributedMode.SYNC else False
        self.context['grad_name_to_param_name'] = {}
W
wangguanqun 已提交
892 893
        self.context['tensor_table'] = {}
        build_var_distributed(self.context)
Z
ziyoujiyi 已提交
894

895 896
        self.trainer_endpoints = get_trainer_endpoints(self.role_maker)

897
        self.endpoints = get_ps_endpoints(self.role_maker)
Z
ziyoujiyi 已提交
898
        self.string_hosts = []
899
        for idx, ep in enumerate(self.endpoints):
Z
ziyoujiyi 已提交
900 901 902 903
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            self.string_hosts.append(pshost.serialize_to_string())

904 905 906 907 908 909 910 911 912 913
        self.with_coordinator = self.role_maker._with_coordinator
        self.coordinator_hosts = []
        if self.with_coordinator:
            print("fl-ps > all ps addrs: {}".format(self.string_hosts))
            coordinator_endpoints = self.role_maker._get_coordinator_endpoints()
            for idx, ep in enumerate(coordinator_endpoints):
                ip, port = ep.split(":")
                pshost = fluid.core.PSHost(ip, int(port), idx)
                self.coordinator_hosts.append(pshost.serialize_to_string())

Z
ziyoujiyi 已提交
914 915
        self.ps_desc_builder = PsDescBuilder(self.context)

916
    def _init_all_params(self, scopes, send_ctx, recv_map):
917 918 919 920 921 922 923
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
924
            #print("init params:", idx, table_id, var_names)
925 926 927 928 929 930 931 932 933 934
            self._worker.push_dense_params(scope, table_id, var_names)

    def _pull_all_dense(self, scopes, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
935
            #print("pull all dense:", idx, table_id, var_names)
936 937
            self._worker.pull_dense_params(scope, table_id, var_names)

938 939 940 941 942 943 944 945 946 947 948
    def _init_params(self, program, scope, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("init params:", table_id, var_names)
            self._worker.push_dense_params(scope, table_id, var_names)

949 950 951 952 953 954 955 956 957 958 959 960
    def _pull_dense(self, program, scope, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull dense:", table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)

    def _init_worker(self, scopes=None):
Z
ziyoujiyi 已提交
961
        worker_desc = self.ps_desc_builder.build_worker_desc()
Z
ziyoujiyi 已提交
962 963 964 965 966 967
        if self.context['use_ps_gpu']:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
968 969 970 971
            gpus_env = [int(s) for s in gpus_env.split(",")]
            main_program._fleet_opt["worker_places"] = gpus_env
            PSGPU = fluid.core.PSGPU()
            PSGPU.init_gpu_ps(gpus_env)
Z
ziyoujiyi 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985

        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
986
            ep_list=self.endpoints)
987
        self._send_ctx = send_ctx
Z
ziyoujiyi 已提交
988 989
        trainer_config = self.context['trainer']

990 991
        if self.debug:
            print("worker_desc: \n{}".format(worker_desc))
Z
ziyoujiyi 已提交
992 993 994 995 996 997 998 999 1000 1001 1002
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()

1003
        kwargs["barrier_table_id"] = self.ps_desc_builder.barrier_table_id
Z
ziyoujiyi 已提交
1004 1005 1006 1007 1008

        if self.context['ps_mode'] == DistributedMode.SYNC:
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

W
wangguanqun 已提交
1009
        print("communicator config:", trainer_config.get_communicator_flags())
Z
ziyoujiyi 已提交
1010

1011 1012 1013 1014 1015 1016 1017 1018
        self._worker.init_worker(worker_desc, self.string_hosts, self.role_id)
        self.trainer_endpoint = get_trainer_endpoint(self.role_maker)
        print("fl-ps > trainer_endpoint: {}".format(self.trainer_endpoint))
        print("fl-ps > with_coordinator? {}".format(self.with_coordinator))
        print("fl-ps > coordinator addr: {}".format(self.coordinator_hosts))
        if self.with_coordinator:
            self._worker.init_fl_worker(self.coordinator_hosts, self.role_id,
                                        self.trainer_endpoint)
1019

1020 1021
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode:
1022 1023 1024
            self._communicator = Communicator(
                trainer_config.mode, kwargs,
                trainer_config.get_communicator_flags())
1025
            self._communicator.init_with_ctx(send_ctx, dense_map, worker_desc,
1026 1027
                                             self.string_hosts,
                                             fluid.global_scope())
Z
ziyoujiyi 已提交
1028
        fleet.util.barrier()
1029 1030 1031

        # info = self._communicator.get_client_info()
        info = self._worker.get_client_info()
Z
ziyoujiyi 已提交
1032
        if isinstance(info, list) and len(info) > 0:
1033 1034
            all_info = self.role_maker._all_gather(
                info[0])  # 收集其他 client 的 service 地址
Z
ziyoujiyi 已提交
1035 1036 1037 1038
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
1039 1040 1041 1042 1043

            # self._communicator.set_clients(all_info)
            # self._communicator.create_client_to_client_connection()
            self._worker.set_clients(all_info)
            self._worker.create_client2client_connection()
Z
ziyoujiyi 已提交
1044 1045 1046 1047 1048 1049 1050 1051
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

Z
ziyoujiyi 已提交
1052 1053
        # for GEO & heter_ps
        init_params = dense_map
Z
ziyoujiyi 已提交
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
        # if not is_test:
        #     self._communicator.init_params(init_params)
        #     fleet.util.barrier()
        # self._communicator.pull_dense(init_params)
        # fleet.util.barrier()

        if scopes is None:
            if len(self.origin_main_programs) > 1:
                raise ValueError(
                    "You must set the scope list when you have Multiple programs"
                )
            scopes = [fluid.global_scope()]
        if len(self.origin_main_programs) != len(scopes):
            raise VauleError("len(programs) != len(scopes)")

        self.scopes = scopes
Z
ziyoujiyi 已提交
1071
        if not is_test:
1072 1073
            if self.context[
                    'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1074 1075
                self._communicator.init_params(init_params)
            else:
D
danleifeng 已提交
1076
                if not self.context['use_ps_gpu']:
1077
                    if self.role_id == 0:
1078
                        print("entering self._init_all_params()")
D
danleifeng 已提交
1079
                        self._init_all_params(scopes, send_ctx, dense_map)
1080

1081 1082
            fleet.util.barrier()  # 保证 0 号 worker 参数 push_dense_param over

D
danleifeng 已提交
1083
        if not self.context['use_ps_gpu']:
Z
ziyoujiyi 已提交
1084
            self._pull_all_dense(scopes, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1085 1086
        fleet.util.barrier()

1087 1088
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1089 1090 1091 1092
            if not self._communicator.is_running():
                self._communicator.start()
            else:
                warnings.warn("communicator has been initialized, skip")
Z
ziyoujiyi 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            wait_server_ready(self.role_maker._get_pserver_endpoints())
            if self.is_heter_ps_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.is_heter_ps_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
1108 1109 1110
                self._heter_client = HeterClient(
                    next_trainers, previous_trainers,
                    self.role_maker._role_id())  # --> HeterClient::GetInstance
Z
ziyoujiyi 已提交
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    def _init_coordinator(self, scopes=None):
        if self._coordinator == None:
            self._coordinator = Coordinator(self.string_hosts)

        print(">>> curr node ip: {}".format(self.coordinator_hosts[0]))
        print(">>> all trainer endpoints: {}".format(self.trainer_endpoints))
        self._coordinator.start_coordinator(self.coordinator_hosts[0],
                                            self.trainer_endpoints)

    def _make_fl_strategy(self):
        if self._coordinator == None:
            assert ("Coordinator py object is null!")
        else:
            self._coordinator.make_fl_strategy()

Z
ziyoujiyi 已提交
1127
    def _init_server(self, dirname=None, var_names=None, **kwargs):
Z
ziyoujiyi 已提交
1128
        server_desc = self.ps_desc_builder.build_server_desc()
Z
ziyoujiyi 已提交
1129 1130 1131 1132
        trainers = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())

1133 1134
        if self.debug:
            print("server_desc: \n{}".format(server_desc))
W
wangguanqun 已提交
1135

Z
ziyoujiyi 已提交
1136
        self._server = fluid.core.DistFleetWrapper()
1137
        self._server.init_server(server_desc, self.string_hosts, self.role_id,
Z
ziyoujiyi 已提交
1138
                                 trainers, self._server_sub_program)
Z
ziyoujiyi 已提交
1139

W
wangguanqun 已提交
1140 1141 1142
        dist_varnames = get_sparse_tablenames(self.origin_main_programs, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                False)
Z
ziyoujiyi 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
1152 1153
                        "fleet.init server can only load sparse variables in {}"
                        .format(distributed_varnames))
Z
ziyoujiyi 已提交
1154 1155 1156 1157 1158
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

Z
ziyoujiyi 已提交
1159
        sparse_table_maps = self.ps_desc_builder.sparse_table_maps
Z
ziyoujiyi 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
            self._server.load_sparse(dirname, "0", table_id)

    def _run_server(self):
        ep = get_ps_endpoint(self.role_maker)
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
1174 1175 1176
        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator.stop()
        self._worker.stop_worker()
Z
ziyoujiyi 已提交
1177 1178 1179 1180 1181 1182
        if self.is_heter_ps_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
            self._heter_client.stop()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
1183

Z
ziyoujiyi 已提交
1184 1185 1186 1187
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

W
wangguanqun 已提交
1188
            from .utils.public import _get_varname_parts
Z
ziyoujiyi 已提交
1189 1190 1191 1192
            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

1193
            if origin_varname.startswith("learning_rate_"):
Z
ziyoujiyi 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

W
wangguanqun 已提交
1204 1205 1206 1207 1208 1209 1210
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

Z
ziyoujiyi 已提交
1211 1212
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
W
wangguanqun 已提交
1213 1214
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                     True)
Z
ziyoujiyi 已提交
1215
        values = []
W
wangguanqun 已提交
1216
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1217 1218 1219 1220
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # only save sparse param to local
                try:
W
wangguanqun 已提交
1221
                    self._worker.recv_and_save_model(id, model_path)
Z
ziyoujiyi 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
                except:
                    pass
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
            values.extend(names)
        # self._worker.save_all_model(dirname, mode)
        return values

    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
                                       main_program,
                                       mode=0):

        denses = get_the_one_recv_context(
            self.context,
            is_dense=True,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
Z
ziyoujiyi 已提交
1244
            split_dense_table=self.is_heter_ps_mode,
Z
ziyoujiyi 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
            use_origin_program=True)

        sparse_varnames = self._save_sparse_params(executor, dirname, sparses,
                                                   main_program, mode)

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)
        self._communicator.pull_dense(denses)

        saved_varnames = sparse_varnames

        remaining_vars = list(
1258 1259
            filter(TheOnePSRuntime.__exclude_vars(saved_varnames),
                   main_program.list_vars()))
Z
ziyoujiyi 已提交
1260 1261 1262 1263 1264 1265

        import paddle
        for var in remaining_vars:
            # if var.name not in recv_dense_varnames:
            #     continue
            tensor = var.get_value()
1266 1267 1268
            paddle.save(tensor,
                        os.path.join(dirname, var.name),
                        use_binary_format=True)
Z
ziyoujiyi 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
                                        mode=0,
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        if main_program is None:
1297
            main_program = self.context['origin_main_program']
Z
ziyoujiyi 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        # Todo(MrChengmo): Save optimizer status
        # self._save_distributed_persistables(executor, dirname, main_program,
        #                                     mode)
        self._worker.save_all_model(dirname, mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True,
                                           mode=0):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        import paddle
1332 1333 1334 1335 1336
        program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(program))
        scope = self.scopes[idx]
        print("save inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

W
wangguanqun 已提交
1352
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
        model_basename = "__model__"
        model_basename = os.path.join(model_path, model_basename)
        paddle.save(infer_program, model_basename)

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)

1365 1366 1367
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
Z
ziyoujiyi 已提交
1368 1369
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1370 1371 1372
            use_origin_program=self.is_heter_ps_mode,
            ep_list=self.endpoints)
        self._pull_dense(program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1373 1374 1375 1376 1377

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
1378 1379
            filter(TheOnePSRuntime.__exclude_vars(sparse_names),
                   infer_program.list_vars()))
Z
ziyoujiyi 已提交
1380 1381

        for var in remaining_vars:
1382
            tensor = var.get_value(scope)
1383 1384 1385
            paddle.save(tensor,
                        os.path.join(model_path, var.name),
                        use_binary_format=True)
Z
ziyoujiyi 已提交
1386 1387 1388 1389 1390 1391 1392

    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)

Z
zhaocaibei123 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    def _save_cache_model(self, dirname, **kwargs):
        mode = kwargs.get("mode", 0)
        table_id = kwargs.get("table_id", 0)
        self._worker.client_flush()
        fleet.util.barrier()
        cache_threshold = 0.0

        if self.role_maker._is_first_worker():
            cache_threshold = self._worker.get_cache_threshold(table_id)
        #check cache threshold right or not
        fleet.util.barrier()

        if self.role_maker._is_first_worker():
            self._worker.cache_shuffle(table_id, dirname, mode, cache_threshold)

        fleet.util.barrier()

        feasign_num = -1
        if self.role_maker._is_first_worker():
            feasign_num = self._worker.save_cache(table_id, dirname, mode)

        fleet.util.barrier()
        return feasign_num

Z
ziyoujiyi 已提交
1417
    def _load_sparse_params(self, dirname, context, main_program, mode):
W
wangguanqun 已提交
1418
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
Z
ziyoujiyi 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
                                                     True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
1434 1435 1436 1437 1438
        main_program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(main_program))
        scope = self.scopes[idx]
        print("load inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

1454 1455 1456 1457 1458 1459 1460 1461
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
            ep_list=self.endpoints)

Z
ziyoujiyi 已提交
1462
        recv_dense_varnames = []
1463
        for _, names in dense_map.items():
Z
ziyoujiyi 已提交
1464 1465 1466 1467 1468
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
1469 1470
            filter(TheOnePSRuntime.__exclude_vars(loaded_varnames),
                   main_program.list_vars()))
Z
ziyoujiyi 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(model_path, var.name))
1481
            var.set_value(tensor, scope)
Z
ziyoujiyi 已提交
1482

1483
        self._init_params(main_program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

    def _load_distributed_persistables(self, path, mode):
        self._worker.load_model(path, mode)

    def load_model(self, path, mode):
        if mode == 0 or mode == 3:
            self._load_distributed_persistables(path, mode)
        else:
            self._ps_inference_load_inference_model(path, mode)

    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0

        fleet.util.barrier()
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1504
            sparses = get_the_one_recv_context(
Z
ziyoujiyi 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513
                self.context,
                is_dense=False,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode,
                use_origin_program=True)

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()