the_one_ps.py 57.4 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
ziyoujiyi 已提交
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Z
ziyoujiyi 已提交
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
Z
ziyoujiyi 已提交
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
ziyoujiyi 已提交
14 15 16 17 18

import warnings

import os
import paddle.fluid as fluid
Z
ziyoujiyi 已提交
19
from paddle.distributed import fleet
Z
ziyoujiyi 已提交
20
from paddle.fluid import core
Z
ziyoujiyi 已提交
21
from paddle.distributed.ps.utils.public import *
Z
ziyoujiyi 已提交
22 23 24 25 26
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
W
wangguanqun 已提交
27 28
from paddle.distributed.fleet.runtime.runtime_base import RuntimeBase
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
Z
ziyoujiyi 已提交
29
from paddle.distributed.fleet.proto import the_one_ps_pb2
Z
ziyoujiyi 已提交
30 31 32
from paddle.fluid.communicator import Communicator, HeterClient
from google.protobuf import text_format

Z
ziyoujiyi 已提交
33 34 35 36
__all__ = [
    'Table', 'SparseTable', 'GeoSparseTable', 'BarrierTable', 'TensorTable',
    'DenseTable'
]
Z
ziyoujiyi 已提交
37 38


W
wangguanqun 已提交
39 40 41 42
def get_program_by_id(context, program_id):
    programs = context["origin_main_programs"]
    for i, program in enumerate(programs):
        if id(program) == program_id:
43 44
            return program, context["origin_startup_programs"][i], i
    return None, None, None
W
wangguanqun 已提交
45 46 47


def parse_table_class(varname, program_id, context):
48
    main_program, startup_program, idx = get_program_by_id(context, program_id)
W
wangguanqun 已提交
49
    for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
50 51 52 53 54 55 56 57 58 59 60 61
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "MemorySparseTable"


Z
ziyoujiyi 已提交
62
def check_embedding_dim(accessor_proto, varname, program_id, context):
63
    main_program, startup_program, idx = get_program_by_id(context, program_id)
Z
ziyoujiyi 已提交
64
    embedding_dim = 0
W
wangguanqun 已提交
65
    for var in main_program.list_vars():
Z
ziyoujiyi 已提交
66 67
        if var.name == varname:
            embedding_dim = var.shape[1]
Z
ziyoujiyi 已提交
68 69
            print('new var: {}, {}, {}'.format(var, embedding_dim,
                                               accessor_proto.fea_dim))
Z
ziyoujiyi 已提交
70
            break
71

Z
ziyoujiyi 已提交
72
    fea_dim = accessor_proto.fea_dim
73 74 75
    if accessor_proto.accessor_class == "SparseAccessor":
        if fea_dim != embedding_dim + 2:
            raise ValueError(
76 77
                "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}"
                .format(embedding_dim + 2, fea_dim))
78 79 80
    else:
        if fea_dim != embedding_dim:
            raise ValueError(
81 82
                "The fea_dim is wrong, it will be sparse_embedding_dim: {}, but got {}"
                .format(embedding_dim, fea_dim))
83

Z
ziyoujiyi 已提交
84
    embedx_dim = accessor_proto.embedx_dim
85 86 87
    if accessor_proto.accessor_class == "SparseAccessor":
        if embedx_dim != embedding_dim - 1:
            raise ValueError(
88 89
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}"
                .format(embedding_dim - 1, embedx_dim))
90 91 92
    else:
        if embedx_dim != embedding_dim - 3:
            raise ValueError(
93 94
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 3: {}, but got {}"
                .format(embedding_dim - 3, embedx_dim))
Z
ziyoujiyi 已提交
95 96


Z
ziyoujiyi 已提交
97
class Service:
98

Z
ziyoujiyi 已提交
99 100 101 102 103 104 105 106 107 108 109 110
    def __init__(self):
        pass

    def _set(self, service_proto):
        service_proto.server_class = "BrpcPsServer"
        service_proto.client_class = "BrpcPsClient"
        service_proto.service_class = "BrpcPsService"
        service_proto.start_server_port = 0
        service_proto.server_thread_num = 12


class GpuService(Service):
111

Z
ziyoujiyi 已提交
112
    def __init__(self):
113
        super(GpuService, self).__init__()
Z
ziyoujiyi 已提交
114 115 116 117 118 119

    def _set(self, service_proto):
        service_proto.server_class = 'PsLocalServer'
        service_proto.client_class = 'PsLocalClient'


Z
ziyoujiyi 已提交
120
class Accessor:
121

Z
ziyoujiyi 已提交
122 123 124
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
Z
ziyoujiyi 已提交
125 126
        self.feature_dim = 0
        self.embedding_dim = 0
Z
ziyoujiyi 已提交
127

Z
ziyoujiyi 已提交
128 129
    # TableAccessorParameter accessor
    def _set(self, accessor_proto, varname, program_id, context):
130 131
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
Z
ziyoujiyi 已提交
132 133 134 135 136
        embedding_dim = 0
        for var in main_program.list_vars():
            if var.name == varname:
                embedding_dim = var.shape[1]
                break
Z
ziyoujiyi 已提交
137

Z
ziyoujiyi 已提交
138
        if not accessor_proto.HasField("accessor_class"):
139
            # DownpourSparseValueAccessor
140
            if context['use_ps_gpu']:
141
                accessor_proto.accessor_class = "CtrDymfAccessor"
142 143
            else:
                accessor_proto.accessor_class = "SparseAccessor"
Z
ziyoujiyi 已提交
144
        if not accessor_proto.HasField("fea_dim"):
145 146 147 148
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.fea_dim = embedding_dim + 2
            else:
                accessor_proto.fea_dim = embedding_dim
Z
ziyoujiyi 已提交
149
        if not accessor_proto.HasField("embedx_dim"):
150 151 152 153
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.embedx_dim = embedding_dim - 1
            else:
                accessor_proto.embedx_dim = embedding_dim - 3
Z
ziyoujiyi 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        if not accessor_proto.HasField("embedx_threshold"):
            accessor_proto.embedx_threshold = 0

        ctr_accessor_param = accessor_proto.ctr_accessor_param
        if not ctr_accessor_param.HasField("nonclk_coeff"):
            ctr_accessor_param.nonclk_coeff = 0.1
        if not ctr_accessor_param.HasField("click_coeff"):
            ctr_accessor_param.click_coeff = 1.0
        if not ctr_accessor_param.HasField("base_threshold"):
            ctr_accessor_param.base_threshold = 0
        if not ctr_accessor_param.HasField("delta_threshold"):
            ctr_accessor_param.delta_threshold = 0
        if not ctr_accessor_param.HasField("delta_keep_days"):
            ctr_accessor_param.delta_keep_days = 16
        if not ctr_accessor_param.HasField("show_click_decay_rate"):
            ctr_accessor_param.show_click_decay_rate = 1
        if not ctr_accessor_param.HasField("delete_threshold"):
            ctr_accessor_param.delete_threshold = 0
        if not ctr_accessor_param.HasField("delete_after_unseen_days"):
            ctr_accessor_param.delete_after_unseen_days = 30
        if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
            ctr_accessor_param.ssd_unseenday_threshold = 1

        for sgd_param in [
                accessor_proto.embed_sgd_param, accessor_proto.embedx_sgd_param
        ]:
            if not sgd_param.HasField("name"):
                sgd_param.name = "SparseAdaGradSGDRule"
            if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
                if not sgd_param.adagrad.HasField("learning_rate"):
                    sgd_param.adagrad.learning_rate = 0.05
                if not sgd_param.adagrad.HasField("initial_g2sum"):
                    sgd_param.adagrad.initial_g2sum = 3.0
                if not sgd_param.adagrad.HasField("initial_range"):
                    sgd_param.adagrad.initial_range = 0.0001
                if len(sgd_param.adagrad.weight_bounds) == 0:
                    sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
            if sgd_param.name == "SparseNaiveSGDRule":
                if not sgd_param.naive.HasField("learning_rate"):
                    sgd_param.naive.learning_rate = 0.05
                if not sgd_param.naive.HasField("initial_range"):
                    sgd_param.naive.initial_range = 0.0001
                if len(sgd_param.naive.weight_bounds) == 0:
                    sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
            if sgd_param.name == "SparseAdamSGDRule":
                if not sgd_param.adam.HasField("learning_rate"):
                    sgd_param.adam.learning_rate = 0.001
                if not sgd_param.adam.HasField("initial_range"):
                    sgd_param.adam.initial_range = 0.0001
                if not sgd_param.adam.HasField("beta1_decay_rate"):
                    sgd_param.adam.beta1_decay_rate = 0.9
                if not sgd_param.adam.HasField("beta2_decay_rate"):
                    sgd_param.adam.beta2_decay_rate = 0.999
                if not sgd_param.adam.HasField("ada_epsilon"):
                    sgd_param.adam.ada_epsilon = 1e-08
                if len(sgd_param.adam.weight_bounds) == 0:
                    sgd_param.adam.weight_bounds.extend([-10.0, 10.0])


class CommonAccessor(Accessor):
214

Z
ziyoujiyi 已提交
215
    def __init__(self):
Z
ziyoujiyi 已提交
216 217 218
        super(CommonAccessor, self).__init__()
        self.table_name = ''
        self.entry = 'none'
Z
ziyoujiyi 已提交
219 220 221 222
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
Z
ziyoujiyi 已提交
223
        self.sync = False
Z
ziyoujiyi 已提交
224 225 226 227 228 229 230 231 232 233 234 235
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
236 237 238 239 240
        opt_input_map["adam_d2sum"] = [("Param", None), ("D2Sum", None),
                                       ("G2Sum", None), ("Moment", None),
                                       ("MomentDecayRate", 1),
                                       ("AdaDecayRate", 1), ("AdaEpsilon", 1),
                                       ("LearningRate", 1)]
Z
ziyoujiyi 已提交
241 242 243
        opt_input_map["sum"] = [("Param", None)]
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
W
wangguanqun 已提交
244
        opt_input_map["summary"] = [("Param", None), ("SummaryDecayRate", 1)]
Z
ziyoujiyi 已提交
245 246 247 248 249 250 251 252 253

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["naive_adagrad"] = []
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
W
wangguanqun 已提交
254
        opt_attr_map["summary"] = []
Z
ziyoujiyi 已提交
255 256 257 258 259 260 261 262 263 264 265

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

W
wangguanqun 已提交
266
    def parse_entry(self, varname, program_id, context):
267 268
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
W
wangguanqun 已提交
269
        for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

    def get_shard(self, total_dim, shard_num, pserver_id):
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
299
        # print("get_initializer_attr param name:", value_name)
Z
ziyoujiyi 已提交
300 301 302 303
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
304
                # print("get_initializer_attr op type:", op.type)
Z
ziyoujiyi 已提交
305
                for attr in self.opt_init_map[op.type]:
306
                    # print("get_initializer_attr opt_init_map attr:", attr)
Z
ziyoujiyi 已提交
307
                    init_attr.append(str(op.attr(attr)))
308
                    # print("get_initializer_attr op attr:", str(op.attr(attr)))
Z
ziyoujiyi 已提交
309 310 311 312
                attr_str = l_in.join(init_attr)
                break
        return attr_str

W
wangguanqun 已提交
313 314 315 316 317 318
    def parse_by_optimizer(self, ctx, context):
        grad_name = ctx.origin_varnames()[0]
        is_sparse = ctx.is_sparse()
        size = ctx.sections()[0]
        single_dim = ctx.sections()[1] if ctx.is_sparse() else 1
        adam_d2sum = context["user_defined_strategy"].adam_d2sum
319 320
        # print("parse_by_optimizer table_id:{} is_datanorm:{}".format(
        #     ctx.table_id(), ctx.is_datanorm_table()))
W
wangguanqun 已提交
321

322 323
        main_program, startup_program, idx = get_program_by_id(
            context, ctx.program_id())
Z
ziyoujiyi 已提交
324 325 326
        pserver_id = get_role_id(context['role_maker'])
        pserver_num = len(get_ps_endpoints(context['role_maker']))
        optimizer_ops = get_optimize_ops(main_program)
327 328
        # print("the one ps optimizer_ops:", optimizer_ops)
        # print("the one ps parse_by_optimizer grad_name:", grad_name)
Z
ziyoujiyi 已提交
329 330 331 332
        oop = None

        for op in optimizer_ops:
            if ("Param" in op.input_names) and (
333 334
                    op.input("Param")[0]
                    == context['grad_name_to_param_name'][grad_name]):
Z
ziyoujiyi 已提交
335 336 337 338 339 340 341 342 343 344 345 346
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = get_trainers(context['role_maker'])
W
wangguanqun 已提交
347 348
        self.table_num = size
        self.table_dim = single_dim
Z
ziyoujiyi 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361

        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
        if context['ps_mode'] == DistributedMode.GEO:
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        elif context['use_ps_gpu'] and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
W
wangguanqun 已提交
362 363 364 365 366
        elif ctx.is_datanorm_table():
            param_varnames = self.opt_input_map["summary"]
            attr_varnames = self.opt_attr_map["summary"]
            self.accessor_class = "summary"
        elif adam_d2sum and not is_sparse:
Z
ziyoujiyi 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
        else:
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            if self.accessor_class == "adam_d2sum":
                #for dims
                if shape is None:
                    if is_sparse:
W
wangguanqun 已提交
381
                        shape = single_dim
Z
ziyoujiyi 已提交
382
                    else:
W
wangguanqun 已提交
383
                        shape = self.get_shard(size, pserver_num, pserver_id)
Z
ziyoujiyi 已提交
384 385 386 387 388 389 390
                dims.append(shape)

                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
391 392
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
393 394
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
395
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
396

397 398
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
399 400 401 402 403 404 405 406 407
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
W
wangguanqun 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421
            elif self.accessor_class == "summary":
                #for dims
                if shape is None:
                    if is_sparse:
                        shape = single_dim
                    else:
                        shape = self.get_shard(size, pserver_num, pserver_id)
                dims.append(shape)

                #for initializers
                if formal_name == "Param":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]

422 423
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
W
wangguanqun 已提交
424
                elif formal_name == "SummaryDecayRate":
425
                    initializer = "fill_constant&0.999999"
W
wangguanqun 已提交
426 427 428
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
Z
ziyoujiyi 已提交
429 430 431 432 433 434 435 436
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
437 438
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
439 440
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
441
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
442 443 444

                    if shape is None:
                        if is_sparse:
W
wangguanqun 已提交
445
                            shape = single_dim
Z
ziyoujiyi 已提交
446
                        else:
W
wangguanqun 已提交
447
                            shape = self.get_shard(size, pserver_num,
Z
ziyoujiyi 已提交
448 449 450
                                                   pserver_id)
                    dims.append(shape)

451 452
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
453 454 455 456 457 458 459 460 461 462 463
                    initializers.append(initializer)

        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
            attrs.append("&".join([attr_varname, type_, str(value)]))

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

Z
ziyoujiyi 已提交
464 465 466 467 468 469 470 471 472 473 474 475
    # CommonAccessorParameter common
    def _set(self, proto):
        proto.name = self.accessor_class
        proto.table_name = self.table_name
        proto.params.extend(self.params)
        proto.dims.extend(self.dims)
        proto.initializers.extend(self.initializers)
        proto.entry = self.entry
        proto.trainer_num = self.trainer_num
        proto.sync = self.sync
        proto.table_num = self.table_num
        proto.table_dim = self.table_dim
Z
ziyoujiyi 已提交
476 477 478


class Tensor:
479

Z
ziyoujiyi 已提交
480 481 482 483
    def __init__(self, tesnor_dcit):
        self.tensor_dict = tesnor_dcit

    def _set(self, tensor_proto):
484 485
        tensor_proto.main_program_id = self.tensor_dict.get(
            "main_program_id", 0)
Z
ziyoujiyi 已提交
486 487 488 489 490 491
        tensor_proto.startup_program_id = self.tensor_dict.get(
            "startup_program_id", 0)
        tensor_proto.feed_var_name = self.tensor_dict.get("feed_var_name", '')
        tensor_proto.fetch_var_name = self.tensor_dict.get("fetch_var_name", '')
        tensor_proto.tensor_table_class = self.tensor_dict.get(
            "tensor_table_class", '')
Z
ziyoujiyi 已提交
492 493 494


class Table:
495

Z
ziyoujiyi 已提交
496 497 498 499
    def __init__(self):
        self.table_class = None
        self.shard_num = -1
        self.type = None
Z
ziyoujiyi 已提交
500 501 502
        self.accessor = Accessor()
        self.shard_num = 256
        self.common = CommonAccessor()
Z
ziyoujiyi 已提交
503 504
        self.tensor = None

Z
ziyoujiyi 已提交
505 506
    def _set(self, table_proto):
        pass
Z
ziyoujiyi 已提交
507 508


Z
ziyoujiyi 已提交
509
class BarrierTable(Table):
510

Z
ziyoujiyi 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    def __init__(self, context, idx):
        super(BarrierTable, self).__init__()
        self.type = None
        self.shard_num = 256
        self.accessor.accessor_class = 'CommMergeAccessor'
        self.common.attrs = ""
        self.common.dims = []
        self.common.params = []
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.role_maker = context['role_maker']
        self.idx = idx
        self.is_sync = context['is_sync']

    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.table_class = 'BarrierTable'
        table_proto.shard_num = 256
Z
ziyoujiyi 已提交
528
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542

        table_proto.accessor.accessor_class = "CommMergeAccessor"
        table_proto.accessor.fea_dim = 0
        table_proto.accessor.embedx_dim = 0

        table_proto.common.name = ""
        table_proto.common.table_name = "barrier_table"
        table_proto.common.sync = self.is_sync
        table_proto.common.entry = 'none'

        trainer_num = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainer_num += len(self.role_maker._get_heter_worker_endpoints())
        table_proto.common.trainer_num = trainer_num
Z
ziyoujiyi 已提交
543 544


Z
ziyoujiyi 已提交
545
class TensorTable(Table):
546

Z
ziyoujiyi 已提交
547 548 549 550 551
    def __init__(self, idx, tensor_dict, role_maker):
        super(TensorTable, self).__init__()
        self.idx = idx
        self.tensor_dict = tensor_dict
        self.role_maker = role_maker
Z
ziyoujiyi 已提交
552

Z
ziyoujiyi 已提交
553 554
    def _set(self, table_proto):
        table_proto.table_id = self.idx
Z
ziyoujiyi 已提交
555
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
556
        table_proto.table_class = self.tensor_dict.get("tensor_table_class", '')
Z
ziyoujiyi 已提交
557

Z
ziyoujiyi 已提交
558
        table_proto.accessor.accessor_class = "CommMergeAccessor"
Z
ziyoujiyi 已提交
559

560 561
        table_proto.common.table_name = self.tensor_dict.get(
            "feed_var_name", '')
Z
ziyoujiyi 已提交
562
        table_proto.common.trainer_num = get_trainers(self.role_maker)
Z
ziyoujiyi 已提交
563

Z
ziyoujiyi 已提交
564 565
        tensor = Tensor(self.tensor_dict)
        tensor._set(table_proto.tensor)
Z
ziyoujiyi 已提交
566 567


Z
ziyoujiyi 已提交
568
class SparseTable(Table):
569

Z
ziyoujiyi 已提交
570 571 572 573 574 575 576
    def __init__(self, context, send_ctx):
        super(SparseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.type = None
        self.table_class = 'MemorySparseTable'
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
577

Z
ziyoujiyi 已提交
578 579
    def _set(self, table_proto):
        ctx = self.ctx
580 581
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
582 583 584
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
585
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        table_proto.shard_num = self.shard_num

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]

        print('new table_name: {}'.format(self.common.table_name))
        all_table_proto = self.context[
            "user_defined_strategy"].sparse_table_configs
        usr_table_proto = all_table_proto.add()
        for proto in all_table_proto:
            if proto.table_name == self.common.table_name:
                usr_table_proto = proto
                break
        table_proto.table_class = 'MemorySparseTable'
        warnings.warn("The PS mode must use MemorySparseTable.")
        if usr_table_proto.HasField("shard_num"):
            table_proto.shard_num = usr_table_proto.shard_num
        else:
604 605 606 607 608 609 610 611 612 613
            if self.context['use_ps_gpu']:
                table_proto.shard_num = 37
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 37 in gpups."
                )
            else:
                table_proto.shard_num = 1000
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 1000 in cpups."
                )
Z
ziyoujiyi 已提交
614

Z
ziyoujiyi 已提交
615 616 617
        if usr_table_proto.accessor.ByteSize() == 0:
            warnings.warn(
                "The accessor of sparse table is not set, use default value.")
Z
ziyoujiyi 已提交
618

Z
ziyoujiyi 已提交
619 620 621 622
        table_proto.accessor.ParseFromString(
            usr_table_proto.accessor.SerializeToString())
        self.accessor._set(table_proto.accessor, self.common.table_name,
                           ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
623

Z
ziyoujiyi 已提交
624 625
        check_embedding_dim(table_proto.accessor, self.common.table_name,
                            ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
626

Z
ziyoujiyi 已提交
627
        self.common.parse_by_optimizer(ctx, self.context)
628 629
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
630
        self.common.sync = True if self.context['is_sync'] else False
Z
ziyoujiyi 已提交
631

Z
ziyoujiyi 已提交
632
        self.common._set(table_proto.common)
Z
ziyoujiyi 已提交
633 634


Z
ziyoujiyi 已提交
635
class GeoSparseTable(SparseTable):
636

Z
ziyoujiyi 已提交
637 638
    def __init__(self, context, send_ctx):
        super(GeoSparseTable, self).__init__(context, send_ctx)
639
        self.table_class = "MemorySparseGeoTable"
Z
ziyoujiyi 已提交
640 641 642 643 644
        if self.context['ps_mode'] != DistributedMode.GEO:
            raise ValueError("not geo sparse table!")

    def _set(self, table_proto):
        ctx = self.ctx
645 646
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
647 648 649
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
650
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
651 652 653 654 655 656 657 658 659
        table_proto.shard_num = self.shard_num

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = ctx.sections()[1]

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]
        self.common.parse_by_optimizer(ctx, self.context)
660 661
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
662 663 664 665 666
        self.common.sync = False
        self.common._set(table_proto.common)


class DenseTable(Table):
667

Z
ziyoujiyi 已提交
668 669 670 671 672
    def __init__(self, context, send_ctx):
        super(DenseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
673

Z
ziyoujiyi 已提交
674 675
    def _set(self, table_proto):
        ctx = self.ctx
676 677
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == True):
Z
ziyoujiyi 已提交
678 679 680 681
            return

        table_proto.table_id = ctx.table_id()

Z
ziyoujiyi 已提交
682
        table_proto.type = the_one_ps_pb2.PS_DENSE_TABLE
683
        table_proto.table_class = "MemoryDenseTable"
Z
ziyoujiyi 已提交
684 685 686 687 688 689 690 691
        table_proto.shard_num = 256

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = 1

        self.common.table_name = "MergedDense"
        self.common.parse_by_optimizer(ctx, self.context)
692 693
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
694 695 696 697 698 699
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)


class Server:
700

Z
ziyoujiyi 已提交
701
    def __init__(self):
Z
ziyoujiyi 已提交
702
        pass
Z
ziyoujiyi 已提交
703

Z
ziyoujiyi 已提交
704 705
    def _set(self):
        pass
Z
ziyoujiyi 已提交
706 707


Z
ziyoujiyi 已提交
708
class DownpourServer(Server):
709

Z
ziyoujiyi 已提交
710 711 712 713 714
    def __init__(self):
        super(DownpourServer, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
715 716 717


class Worker:
718

Z
ziyoujiyi 已提交
719
    def __init__(self):
Z
ziyoujiyi 已提交
720
        pass
Z
ziyoujiyi 已提交
721

Z
ziyoujiyi 已提交
722 723
    def _set(self):
        pass
Z
ziyoujiyi 已提交
724 725


Z
ziyoujiyi 已提交
726
class DownpourWorker(Worker):
727

Z
ziyoujiyi 已提交
728 729 730 731 732
    def __init__(self):
        super(DownpourWorker, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
733 734 735


class fsClient:
736

Z
ziyoujiyi 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749
    def __init__(self, fs_client_param):
        self.fs_client_param = fs_client_param

    def _set(self, proto):
        if not text_format.MessageToString(self.fs_client_param):
            return
        proto.uri = self.fs_client_param.uri
        proto.user = self.fs_client_param.user
        proto.passwd = self.fs_client_param.passwd
        proto.hadoop_bin = self.fs_client_param.hadoop_bin


class PsDescBuilder(object):
750

Z
ziyoujiyi 已提交
751 752 753 754 755 756
    def __init__(self, context):
        self.context = context
        self.is_sync = context['is_sync']
        self.ps_mode = context['ps_mode']
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.use_ps_gpu = context['use_ps_gpu']
757
        self.barrier_table_id = None
758 759
        print("is_heter_ps_mode in the_one_ps.py? {}".format(
            self.is_heter_ps_mode))
Z
ziyoujiyi 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772
        self.send_ctx = get_the_one_send_context(
            self.context,
            use_origin_program=True,
            split_dense_table=self.is_heter_ps_mode)

        self.tensor_table_dict = {}  # TODO
        self._server_sub_program = []

        self.tables = self._get_tables()

        self.service = self._get_service()
        self.fs_client = self._get_fs_client()

Z
ziyoujiyi 已提交
773
        self.ps_desc = the_one_ps_pb2.PSParameter()
Z
ziyoujiyi 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

    def _get_tensor_tables(self):
        program_idx = 0
        if not self.tensor_table_dict:
            self._server_sub_program.append(Program().desc)
        tables = []
        for table_name in self.tensor_table_dict:
            tables.append(globals()['TensorTable'](len(tables), tensor_dict,
                                                   self.context['role_maker']))
            program_idx += 1
        return tables

    def _get_tables(self):
        tables = []
        for idx, (name, ctx) in enumerate(self.send_ctx.items()):
            if ctx.is_sparse():
                if self.ps_mode == DistributedMode.GEO:
                    tables.append(globals()['GeoSparseTable'](self.context,
                                                              ctx))
                else:
                    tables.append(globals()['SparseTable'](self.context, ctx))
            else:
                tables.append(globals()['DenseTable'](self.context, ctx))
        self.tensor_tables = self._get_tensor_tables()
        tables.extend(self.tensor_tables)
        tables.append(globals()['BarrierTable'](self.context, len(tables)))
800
        print("test_fl_ps: tables len: {}".format(len(tables)))
Z
ziyoujiyi 已提交
801 802 803 804 805
        return tables

    def _get_service(self):
        if self.use_ps_gpu:
            return GpuService()
Z
ziyoujiyi 已提交
806
        else:
Z
ziyoujiyi 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819
            return Service()

    def _get_fs_client(self):
        return fsClient(self.context["user_defined_strategy"].fs_client_param)

    def build_worker_desc(self):
        for table in self.tables:
            table_proto = self.ps_desc.worker_param.downpour_worker_param.downpour_table_param.add(
            )
            table._set(table_proto)
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
820 821
            if type(table) == BarrierTable and self.barrier_table_id is None:
                self.barrier_table_id = table.idx
Z
ziyoujiyi 已提交
822 823 824 825 826
        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        return text_format.MessageToString(self.ps_desc)

    def build_server_desc(self):
827
        self.sparse_table_maps = {}
Z
ziyoujiyi 已提交
828 829 830 831
        for table in self.tables:
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
Z
ziyoujiyi 已提交
832
            if table_proto.type == the_one_ps_pb2.PS_SPARSE_TABLE and table_proto.common is not None:
Z
ziyoujiyi 已提交
833 834 835 836 837 838 839
                self.sparse_table_maps[
                    table_proto.common.table_name] = table_proto.table_id

        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        self.fs_client._set(self.ps_desc.fs_client_param)
        return text_format.MessageToString(self.ps_desc)
Z
ziyoujiyi 已提交
840 841 842


class TheOnePSRuntime(RuntimeBase):
843

Z
ziyoujiyi 已提交
844 845 846 847 848 849 850
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
        self._server_sub_program = []
        self._heter_client = None
851
        self._send_ctx = None
Z
ziyoujiyi 已提交
852 853 854 855

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
W
wangguanqun 已提交
856

Z
ziyoujiyi 已提交
857
        self.origin_main_program = context["origin_main_program"]
Z
ziyoujiyi 已提交
858 859 860 861 862
        self.origin_main_programs = context.get("origin_main_programs",
                                                [self.origin_main_program])
        self.context["origin_main_programs"] = self.origin_main_programs
        self.context["origin_startup_programs"] = context.get(
            'origin_startup_programs', [context['origin_startup_program']])
Z
ziyoujiyi 已提交
863 864 865
        self.context[
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
        self.is_heter_ps_mode = self.context['is_heter_ps_mode']
866 867
        self.context['trainer'] = TrainerRuntimeConfig(
            context['valid_strategy'])
Z
ziyoujiyi 已提交
868
        self.context['ps_mode'] = self.context['trainer'].mode
W
wangguanqun 已提交
869 870
        self.context['use_ps_gpu'] = context['valid_strategy'].a_sync_configs[
            'use_ps_gpu']
Z
ziyoujiyi 已提交
871
        self.context['is_sync'] = True if self.context[
Z
ziyoujiyi 已提交
872 873
            'ps_mode'] == DistributedMode.SYNC else False
        self.context['grad_name_to_param_name'] = {}
W
wangguanqun 已提交
874 875
        self.context['tensor_table'] = {}
        build_var_distributed(self.context)
Z
ziyoujiyi 已提交
876

877
        self.endpoints = get_ps_endpoints(self.role_maker)
Z
ziyoujiyi 已提交
878
        self.string_hosts = []
879
        for idx, ep in enumerate(self.endpoints):
Z
ziyoujiyi 已提交
880 881 882 883 884 885
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            self.string_hosts.append(pshost.serialize_to_string())

        self.ps_desc_builder = PsDescBuilder(self.context)

886
    def _init_all_params(self, scopes, send_ctx, recv_map):
887 888 889 890 891 892 893
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
894
            #print("init params:", idx, table_id, var_names)
895 896 897 898 899 900 901 902 903 904
            self._worker.push_dense_params(scope, table_id, var_names)

    def _pull_all_dense(self, scopes, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
905
            #print("pull all dense:", idx, table_id, var_names)
906 907
            self._worker.pull_dense_params(scope, table_id, var_names)

908 909 910 911 912 913 914 915 916 917 918
    def _init_params(self, program, scope, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("init params:", table_id, var_names)
            self._worker.push_dense_params(scope, table_id, var_names)

919 920 921 922 923 924 925 926 927 928 929 930
    def _pull_dense(self, program, scope, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull dense:", table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)

    def _init_worker(self, scopes=None):
Z
ziyoujiyi 已提交
931
        worker_desc = self.ps_desc_builder.build_worker_desc()
932 933
        #with open("test_fl_ps_worker_desc", "w") as f:
        #    f.write(worker_desc)
Z
ziyoujiyi 已提交
934 935 936 937 938 939
        if self.context['use_ps_gpu']:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
940 941 942
            main_program._fleet_opt["worker_places"] = [
                int(s) for s in gpus_env.split(",")
            ]
Z
ziyoujiyi 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956

        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
957
            ep_list=self.endpoints)
958
        self._send_ctx = send_ctx
Z
ziyoujiyi 已提交
959 960
        trainer_config = self.context['trainer']

W
wangguanqun 已提交
961
        proto_txt = worker_desc
Z
ziyoujiyi 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975
        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
        if debug:
            print("worker: \n{}".format(proto_txt))
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()

976
        kwargs["barrier_table_id"] = self.ps_desc_builder.barrier_table_id
Z
ziyoujiyi 已提交
977 978 979 980 981

        if self.context['ps_mode'] == DistributedMode.SYNC:
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

W
wangguanqun 已提交
982
        print("communicator config:", trainer_config.get_communicator_flags())
Z
ziyoujiyi 已提交
983

984 985 986
        role_id = get_role_id(self.role_maker)
        self._worker.init_worker(proto_txt, self.string_hosts, role_id)

987 988
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode:
989 990 991 992 993 994
            self._communicator = Communicator(
                trainer_config.mode, kwargs,
                trainer_config.get_communicator_flags())
            self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt,
                                             self.string_hosts,
                                             fluid.global_scope())
Z
ziyoujiyi 已提交
995
        fleet.util.barrier()
996 997 998

        # info = self._communicator.get_client_info()
        info = self._worker.get_client_info()
Z
ziyoujiyi 已提交
999 1000 1001 1002 1003 1004
        if isinstance(info, list) and len(info) > 0:
            all_info = self.role_maker._all_gather(info[0])
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
1005 1006 1007 1008 1009

            # self._communicator.set_clients(all_info)
            # self._communicator.create_client_to_client_connection()
            self._worker.set_clients(all_info)
            self._worker.create_client2client_connection()
Z
ziyoujiyi 已提交
1010 1011 1012 1013 1014 1015 1016 1017
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

1018
        # for GEO
Z
ziyoujiyi 已提交
1019 1020
        if self.role_maker._is_first_worker() and self.is_heter_ps_mode:
            # for ps-heter mode load all parameters on first_worker
1021 1022 1023
            init_params = get_the_one_recv_context(self.context,
                                                   split_dense_table=True,
                                                   use_origin_program=True)
Z
ziyoujiyi 已提交
1024 1025 1026
        else:
            init_params = dense_map

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        # if not is_test:
        #     self._communicator.init_params(init_params)
        #     fleet.util.barrier()
        # self._communicator.pull_dense(init_params)
        # fleet.util.barrier()

        if scopes is None:
            if len(self.origin_main_programs) > 1:
                raise ValueError(
                    "You must set the scope list when you have Multiple programs"
                )
            scopes = [fluid.global_scope()]
        if len(self.origin_main_programs) != len(scopes):
            raise VauleError("len(programs) != len(scopes)")

        self.scopes = scopes
Z
ziyoujiyi 已提交
1043
        if not is_test:
1044 1045
            if self.context[
                    'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1046 1047
                self._communicator.init_params(init_params)
            else:
D
danleifeng 已提交
1048 1049
                if not self.context['use_ps_gpu']:
                    if role_id == 0:
1050
                        print("entering self._init_all_params()")
D
danleifeng 已提交
1051
                        self._init_all_params(scopes, send_ctx, dense_map)
1052

1053 1054
            fleet.util.barrier()  # 保证 0 号 worker 参数 push_dense_param over

D
danleifeng 已提交
1055
        if not self.context['use_ps_gpu']:
1056 1057 1058 1059 1060
            if self.is_heter_ps_mode == True and not self.role_maker._is_first_worker(
            ):
                self._communicator.pull_dense(init_params)
            else:
                self._pull_all_dense(scopes, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1061 1062
        fleet.util.barrier()

1063 1064
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1065 1066 1067 1068
            if not self._communicator.is_running():
                self._communicator.start()
            else:
                warnings.warn("communicator has been initialized, skip")
Z
ziyoujiyi 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            wait_server_ready(self.role_maker._get_pserver_endpoints())
            if self.is_heter_ps_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.is_heter_ps_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
1084 1085 1086
                self._heter_client = HeterClient(
                    next_trainers, previous_trainers,
                    self.role_maker._role_id())  # --> HeterClient::GetInstance
Z
ziyoujiyi 已提交
1087 1088

    def _init_server(self, dirname=None, var_names=None, **kwargs):
Z
ziyoujiyi 已提交
1089
        server_desc = self.ps_desc_builder.build_server_desc()
1090 1091
        #with open("test_fl_ps_server_desc", "w") as f:
        #    f.write(server_desc)
Z
ziyoujiyi 已提交
1092 1093 1094 1095 1096
        role_id = get_role_id(self.role_maker)
        trainers = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())

W
wangguanqun 已提交
1097 1098 1099 1100
        # debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
        # if debug:
        #     print("server: \n{}".format(server_desc))

Z
ziyoujiyi 已提交
1101
        self._server = fluid.core.DistFleetWrapper()
Z
ziyoujiyi 已提交
1102 1103
        self._server.init_server(server_desc, self.string_hosts, role_id,
                                 trainers, self._server_sub_program)
Z
ziyoujiyi 已提交
1104

W
wangguanqun 已提交
1105 1106 1107
        dist_varnames = get_sparse_tablenames(self.origin_main_programs, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                False)
Z
ziyoujiyi 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
1117 1118
                        "fleet.init server can only load sparse variables in {}"
                        .format(distributed_varnames))
Z
ziyoujiyi 已提交
1119 1120 1121 1122 1123
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

Z
ziyoujiyi 已提交
1124
        sparse_table_maps = self.ps_desc_builder.sparse_table_maps
Z
ziyoujiyi 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
            self._server.load_sparse(dirname, "0", table_id)

    def _run_server(self):
        ep = get_ps_endpoint(self.role_maker)
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
1139 1140 1141
        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator.stop()
        self._worker.stop_worker()
Z
ziyoujiyi 已提交
1142 1143 1144 1145 1146 1147
        if self.is_heter_ps_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
            self._heter_client.stop()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
1148

Z
ziyoujiyi 已提交
1149 1150 1151 1152
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

W
wangguanqun 已提交
1153
            from .utils.public import _get_varname_parts
Z
ziyoujiyi 已提交
1154 1155 1156 1157
            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

1158
            if origin_varname.startswith("learning_rate_"):
Z
ziyoujiyi 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

W
wangguanqun 已提交
1169 1170 1171 1172 1173 1174 1175
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

Z
ziyoujiyi 已提交
1176 1177
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
W
wangguanqun 已提交
1178 1179
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                     True)
Z
ziyoujiyi 已提交
1180
        values = []
W
wangguanqun 已提交
1181
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1182 1183 1184 1185
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # only save sparse param to local
                try:
W
wangguanqun 已提交
1186
                    self._worker.recv_and_save_model(id, model_path)
Z
ziyoujiyi 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
                except:
                    pass
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
            values.extend(names)
        # self._worker.save_all_model(dirname, mode)
        return values

    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
                                       main_program,
                                       mode=0):

        denses = get_the_one_recv_context(
            self.context,
            is_dense=True,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
Z
ziyoujiyi 已提交
1209
            split_dense_table=self.is_heter_ps_mode,
Z
ziyoujiyi 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
            use_origin_program=True)

        sparse_varnames = self._save_sparse_params(executor, dirname, sparses,
                                                   main_program, mode)

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)
        self._communicator.pull_dense(denses)

        saved_varnames = sparse_varnames

        remaining_vars = list(
1223 1224
            filter(TheOnePSRuntime.__exclude_vars(saved_varnames),
                   main_program.list_vars()))
Z
ziyoujiyi 已提交
1225 1226 1227 1228 1229 1230

        import paddle
        for var in remaining_vars:
            # if var.name not in recv_dense_varnames:
            #     continue
            tensor = var.get_value()
1231 1232 1233
            paddle.save(tensor,
                        os.path.join(dirname, var.name),
                        use_binary_format=True)
Z
ziyoujiyi 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
                                        mode=0,
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        if main_program is None:
1262
            main_program = self.context['origin_main_program']
Z
ziyoujiyi 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        # Todo(MrChengmo): Save optimizer status
        # self._save_distributed_persistables(executor, dirname, main_program,
        #                                     mode)
        self._worker.save_all_model(dirname, mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True,
                                           mode=0):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        import paddle
1297 1298 1299 1300 1301
        program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(program))
        scope = self.scopes[idx]
        print("save inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

W
wangguanqun 已提交
1317
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        model_basename = "__model__"
        model_basename = os.path.join(model_path, model_basename)
        paddle.save(infer_program, model_basename)

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)

1330 1331 1332
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
Z
ziyoujiyi 已提交
1333 1334
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1335 1336 1337
            use_origin_program=self.is_heter_ps_mode,
            ep_list=self.endpoints)
        self._pull_dense(program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1338 1339 1340 1341 1342

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
1343 1344
            filter(TheOnePSRuntime.__exclude_vars(sparse_names),
                   infer_program.list_vars()))
Z
ziyoujiyi 已提交
1345 1346

        for var in remaining_vars:
1347
            tensor = var.get_value(scope)
1348 1349 1350
            paddle.save(tensor,
                        os.path.join(model_path, var.name),
                        use_binary_format=True)
Z
ziyoujiyi 已提交
1351 1352 1353 1354 1355 1356 1357

    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)

Z
zhaocaibei123 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
    def _save_cache_model(self, dirname, **kwargs):
        mode = kwargs.get("mode", 0)
        table_id = kwargs.get("table_id", 0)
        self._worker.client_flush()
        fleet.util.barrier()
        cache_threshold = 0.0

        if self.role_maker._is_first_worker():
            cache_threshold = self._worker.get_cache_threshold(table_id)
        #check cache threshold right or not
        fleet.util.barrier()

        if self.role_maker._is_first_worker():
            self._worker.cache_shuffle(table_id, dirname, mode, cache_threshold)

        fleet.util.barrier()

        feasign_num = -1
        if self.role_maker._is_first_worker():
            feasign_num = self._worker.save_cache(table_id, dirname, mode)

        fleet.util.barrier()
        return feasign_num

Z
ziyoujiyi 已提交
1382
    def _load_sparse_params(self, dirname, context, main_program, mode):
W
wangguanqun 已提交
1383
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
Z
ziyoujiyi 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
                                                     True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
1399 1400 1401 1402 1403
        main_program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(main_program))
        scope = self.scopes[idx]
        print("load inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

1419 1420 1421 1422 1423 1424 1425 1426
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
            ep_list=self.endpoints)

Z
ziyoujiyi 已提交
1427
        recv_dense_varnames = []
1428
        for _, names in dense_map.items():
Z
ziyoujiyi 已提交
1429 1430 1431 1432 1433
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
1434 1435
            filter(TheOnePSRuntime.__exclude_vars(loaded_varnames),
                   main_program.list_vars()))
Z
ziyoujiyi 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(model_path, var.name))
1446
            var.set_value(tensor, scope)
Z
ziyoujiyi 已提交
1447

1448
        self._init_params(main_program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

    def _load_distributed_persistables(self, path, mode):
        self._worker.load_model(path, mode)

    def load_model(self, path, mode):
        if mode == 0 or mode == 3:
            self._load_distributed_persistables(path, mode)
        else:
            self._ps_inference_load_inference_model(path, mode)

    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0

        fleet.util.barrier()
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1469
            sparses = get_the_one_recv_context(
Z
ziyoujiyi 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478
                self.context,
                is_dense=False,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode,
                use_origin_program=True)

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()