yolov3_loss_op.h 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

using Array2 = Eigen::DSizes<int64_t, 2>;
using Array4 = Eigen::DSizes<int64_t, 4>;

template <typename T>
static inline bool isZero(T x) {
  return abs(x) < 1e-6;
}

template <typename T>
static inline T sigmod(T x) {
  return 1.0 / (exp(-1.0 * x) + 1.0);
}

template <typename T>
static inline T CalcMSEWithMask(const Tensor& x, const Tensor& y,
                                const Tensor& mask) {
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
  auto mask_t = EigenVector<T>::Flatten(mask);
D
dengkaipeng 已提交
47 48 49 50 51 52 53 54 55 56

  T error_sum = 0.0;
  T points = 0.0;
  for (int i = 0; i < x_t.dimensions()[0]; i++) {
    if (mask_t(i)) {
      error_sum += pow(x_t(i) - y_t(i), 2);
      points += 1;
    }
  }
  return (error_sum / points);
57 58 59 60 61 62 63 64 65
}

template <typename T>
static inline T CalcBCEWithMask(const Tensor& x, const Tensor& y,
                                const Tensor& mask) {
  auto x_t = EigenVector<T>::Flatten(x);
  auto y_t = EigenVector<T>::Flatten(y);
  auto mask_t = EigenVector<T>::Flatten(mask);

D
dengkaipeng 已提交
66 67 68 69 70 71 72 73 74 75
  T error_sum = 0.0;
  T points = 0.0;
  for (int i = 0; i < x_t.dimensions()[0]; i++) {
    if (mask_t(i)) {
      error_sum +=
          -1.0 * (y_t(i) * log(x_t(i)) + (1.0 - y_t(i)) * log(1.0 - x_t(i)));
      points += 1;
    }
  }
  return (error_sum / points);
76 77 78
}

template <typename T>
D
dengkaipeng 已提交
79 80 81 82 83
static void CalcPredResult(const Tensor& input, Tensor* pred_confs,
                           Tensor* pred_classes, Tensor* pred_x, Tensor* pred_y,
                           Tensor* pred_w, Tensor* pred_h,
                           std::vector<int> anchors, const int class_num,
                           const int stride) {
84 85 86 87 88 89 90 91
  const int n = input.dims()[0];
  const int c = input.dims()[1];
  const int h = input.dims()[2];
  const int w = input.dims()[3];
  const int anchor_num = anchors.size() / 2;
  const int box_attr_num = 5 + class_num;

  auto input_t = EigenTensor<T, 4>::From(input);
D
dengkaipeng 已提交
92
  // auto pred_boxes_t = EigenTensor<T, 5>::From(*pred_boxes);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  auto pred_confs_t = EigenTensor<T, 4>::From(*pred_confs);
  auto pred_classes_t = EigenTensor<T, 5>::From(*pred_classes);
  auto pred_x_t = EigenTensor<T, 4>::From(*pred_x);
  auto pred_y_t = EigenTensor<T, 4>::From(*pred_y);
  auto pred_w_t = EigenTensor<T, 4>::From(*pred_w);
  auto pred_h_t = EigenTensor<T, 4>::From(*pred_h);

  for (int i = 0; i < n; i++) {
    for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
      float an_w = anchors[an_idx * 2] / stride;
      float an_h = anchors[an_idx * 2 + 1] / stride;

      for (int j = 0; j < h; j++) {
        for (int k = 0; k < w; k++) {
          pred_x_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx, j, k));
          pred_y_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx + 1, j, k));
          pred_w_t(i, an_idx, j, k) =
D
dengkaipeng 已提交
112
              input_t(i, box_attr_num * an_idx + 2, j, k);
113
          pred_h_t(i, an_idx, j, k) =
D
dengkaipeng 已提交
114
              input_t(i, box_attr_num * an_idx + 3, j, k);
115

D
dengkaipeng 已提交
116 117 118 119 120 121
          // pred_boxes_t(i, an_idx, j, k, 0) = pred_x_t(i, an_idx, j, k) + k;
          // pred_boxes_t(i, an_idx, j, k, 1) = pred_y_t(i, an_idx, j, k) + j;
          // pred_boxes_t(i, an_idx, j, k, 2) =
          //     exp(pred_w_t(i, an_idx, j, k)) * an_w;
          // pred_boxes_t(i, an_idx, j, k, 3) =
          //     exp(pred_h_t(i, an_idx, j, k)) * an_h;
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

          pred_confs_t(i, an_idx, j, k) =
              sigmod(input_t(i, box_attr_num * an_idx + 4, j, k));

          for (int c = 0; c < class_num; c++) {
            pred_classes_t(i, an_idx, j, k, c) =
                sigmod(input_t(i, box_attr_num * an_idx + 5 + c, j, k));
          }
        }
      }
    }
  }
}

template <typename T>
D
dengkaipeng 已提交
137 138 139 140 141 142 143 144 145 146 147 148
static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
  T b1_x1 = box1[0] - box1[2] / 2;
  T b1_x2 = box1[0] + box1[2] / 2;
  T b1_y1 = box1[1] - box1[3] / 2;
  T b1_y2 = box1[1] + box1[3] / 2;
  T b2_x1 = box2[0] - box2[2] / 2;
  T b2_x2 = box2[0] + box2[2] / 2;
  T b2_y1 = box2[1] - box2[3] / 2;
  T b2_y2 = box2[1] + box2[3] / 2;

  T b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1);
  T b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1);
149 150 151 152 153

  T inter_rect_x1 = std::max(b1_x1, b2_x1);
  T inter_rect_y1 = std::max(b1_y1, b2_y1);
  T inter_rect_x2 = std::min(b1_x2, b2_x2);
  T inter_rect_y2 = std::min(b1_y2, b2_y2);
D
dengkaipeng 已提交
154 155
  T inter_area = std::max(inter_rect_x2 - inter_rect_x1, static_cast<T>(0.0)) *
                 std::max(inter_rect_y2 - inter_rect_y1, static_cast<T>(0.0));
156

D
dengkaipeng 已提交
157
  return inter_area / (b1_area + b2_area - inter_area);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
}

template <typename T>
static inline int GetPredLabel(const Tensor& pred_classes, int n,
                               int best_an_index, int gj, int gi) {
  auto pred_classes_t = EigenTensor<T, 5>::From(pred_classes);
  T score = 0.0;
  int label = -1;
  for (int i = 0; i < pred_classes.dims()[4]; i++) {
    if (pred_classes_t(n, best_an_index, gj, gi, i) > score) {
      score = pred_classes_t(n, best_an_index, gj, gi, i);
      label = i;
    }
  }
  return label;
}

template <typename T>
D
dengkaipeng 已提交
176 177 178 179 180 181
static void PrePorcessGTBox(const Tensor& gt_boxes, const float ignore_thresh,
                            std::vector<int> anchors, const int img_height,
                            const int grid_size, Tensor* obj_mask,
                            Tensor* noobj_mask, Tensor* tx, Tensor* ty,
                            Tensor* tw, Tensor* th, Tensor* tconf,
                            Tensor* tclass) {
182 183 184 185
  const int n = gt_boxes.dims()[0];
  const int b = gt_boxes.dims()[1];
  const int anchor_num = anchors.size() / 2;
  auto gt_boxes_t = EigenTensor<T, 3>::From(gt_boxes);
D
dengkaipeng 已提交
186 187
  auto obj_mask_t = EigenTensor<int, 4>::From(*obj_mask).setConstant(0);
  auto noobj_mask_t = EigenTensor<int, 4>::From(*noobj_mask).setConstant(1);
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  auto tx_t = EigenTensor<T, 4>::From(*tx).setConstant(0.0);
  auto ty_t = EigenTensor<T, 4>::From(*ty).setConstant(0.0);
  auto tw_t = EigenTensor<T, 4>::From(*tw).setConstant(0.0);
  auto th_t = EigenTensor<T, 4>::From(*th).setConstant(0.0);
  auto tconf_t = EigenTensor<T, 4>::From(*tconf).setConstant(0.0);
  auto tclass_t = EigenTensor<T, 5>::From(*tclass).setConstant(0.0);

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (isZero(gt_boxes_t(i, j, 0)) && isZero(gt_boxes_t(i, j, 1)) &&
          isZero(gt_boxes_t(i, j, 2)) && isZero(gt_boxes_t(i, j, 3))) {
        continue;
      }

      int gt_label = gt_boxes_t(i, j, 0);
D
dengkaipeng 已提交
203 204 205 206
      T gx = gt_boxes_t(i, j, 1) * grid_size;
      T gy = gt_boxes_t(i, j, 2) * grid_size;
      T gw = gt_boxes_t(i, j, 3) * grid_size;
      T gh = gt_boxes_t(i, j, 4) * grid_size;
207 208 209 210 211 212 213 214 215 216
      int gi = static_cast<int>(gx);
      int gj = static_cast<int>(gy);

      T max_iou = static_cast<T>(-1);
      T iou;
      int best_an_index = -1;
      std::vector<T> gt_box({0, 0, gw, gh});
      for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
        std::vector<T> anchor_shape({0, 0, static_cast<T>(anchors[2 * an_idx]),
                                     static_cast<T>(anchors[2 * an_idx + 1])});
D
dengkaipeng 已提交
217
        iou = CalcBoxIoU<T>(gt_box, anchor_shape);
218 219 220 221 222
        if (iou > max_iou) {
          max_iou = iou;
          best_an_index = an_idx;
        }
        if (iou > ignore_thresh) {
D
dengkaipeng 已提交
223
          noobj_mask_t(b, an_idx, gj, gi) = 0;
224 225
        }
      }
D
dengkaipeng 已提交
226 227
      obj_mask_t(b, best_an_index, gj, gi) = 1;
      noobj_mask_t(b, best_an_index, gj, gi) = 1;
228 229
      tx_t(i, best_an_index, gj, gi) = gx - gi;
      ty_t(i, best_an_index, gj, gi) = gy - gj;
D
dengkaipeng 已提交
230 231
      tw_t(i, best_an_index, gj, gi) = log(gw / anchors[2 * best_an_index]);
      th_t(i, best_an_index, gj, gi) = log(gh / anchors[2 * best_an_index + 1]);
232 233 234 235
      tclass_t(b, best_an_index, gj, gi, gt_label) = 1;
      tconf_t(b, best_an_index, gj, gi) = 1;
    }
  }
D
dengkaipeng 已提交
236
  noobj_mask_t = noobj_mask_t - obj_mask_t;
237 238 239 240 241 242 243 244
}

template <typename DeviceContext, typename T>
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* gt_boxes = ctx.Input<Tensor>("GTBox");
D
dengkaipeng 已提交
245
    auto* loss = ctx.Output<Tensor>("Loss");
246 247 248 249 250 251 252 253 254 255
    int img_height = ctx.Attr<int>("img_height");
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
D
dengkaipeng 已提交
256
    const T stride = static_cast<T>(img_height) / h;
257 258

    Tensor pred_x, pred_y, pred_w, pred_h;
D
dengkaipeng 已提交
259
    Tensor pred_confs, pred_classes;
260 261 262 263 264 265
    pred_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_confs.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_classes.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
D
dengkaipeng 已提交
266 267
    CalcPredResult<T>(*input, &pred_confs, &pred_classes, &pred_x, &pred_y,
                      &pred_w, &pred_h, anchors, class_num, stride);
268

D
dengkaipeng 已提交
269
    Tensor obj_mask, noobj_mask;
270
    Tensor tx, ty, tw, th, tconf, tclass;
D
dengkaipeng 已提交
271 272
    obj_mask.mutable_data<int>({n, an_num, h, w}, ctx.GetPlace());
    noobj_mask.mutable_data<int>({n, an_num, h, w}, ctx.GetPlace());
273 274 275 276 277 278
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
D
dengkaipeng 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    PrePorcessGTBox<T>(*gt_boxes, ignore_thresh, anchors, img_height, h,
                       &obj_mask, &noobj_mask, &tx, &ty, &tw, &th, &tconf,
                       &tclass);

    T loss_x = CalcMSEWithMask<T>(pred_x, tx, obj_mask);
    T loss_y = CalcMSEWithMask<T>(pred_y, ty, obj_mask);
    T loss_w = CalcMSEWithMask<T>(pred_w, tw, obj_mask);
    T loss_h = CalcMSEWithMask<T>(pred_h, th, obj_mask);
    T loss_conf_true = CalcBCEWithMask<T>(pred_confs, tconf, obj_mask);
    T loss_conf_false = CalcBCEWithMask<T>(pred_confs, tconf, noobj_mask);
    T loss_class = CalcBCEWithMask<T>(pred_classes, tclass, obj_mask);

    auto* loss_data = loss->mutable_data<T>({1}, ctx.GetPlace());
    loss_data[0] = loss_x + loss_y + loss_w + loss_h + loss_conf_true +
                   loss_conf_false + loss_class;
294 295 296 297 298 299 300 301 302 303 304 305 306 307
  }
};

template <typename DeviceContext, typename T>
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
  }
};

}  // namespace operators
}  // namespace paddle